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Abstract

This paper presents an embodied
biologically-plausible model investigating
the relationships existing between Pavlovian
and instrumental conditioning. The model is
validated by successfully reproducing the pri-
mary outcomes of instrumental-conditioning
devaluation tests conducted with normal and
amygdala-lesioned rats. These experiments
are particularly important as they show how
the sensitivity to motivational states exhib-
ited by the Pavlovian system can transfer
to instrumentally acquired behaviors. The
results presented are relevant not only for
neuroscience but also for robotics as they
start to investigate how internal motivational
systems, as those found in real organisms,
might modulate the learning and performance
of goal-directed actions in artificial machines,
so to improve their behavioral flexibility.

1 Introduction

Undoubtedly, living organisms’ behavior is charac-
terized by a degree of autonomy and a flexibility
that by far overcomes those of current robots. A
way to tackle this problem is to attempt to under-
stand the mechanisms underlying such properties so
as to use them in designing robot’s controllers. This
is particularly true for mechanisms regarding moti-
vational and emotional regulation of behavior which
plays a central role in humans’ and other organisms’
behavior but is often overlooked by cognitive sci-
ence. Recently, machine learning and robotics com-
munities have devoted increasing efforts to the study
of autonomous development and learning in robots
(Zlatev and Balkenius, 2001; Weng et al., 2001; Barto
et al., 2004; Schembri et al., 2007, in press). Most
of this literature builds upon the machine learn-
ing framework of reinforcement learning (Sutton and
Barto, 1998), which is intended to provide machines

with the capacity to learn new behaviors on the ba-
sis of rewarding stimuli. Interestingly, reinforcement
learning algorithms have gained increasing interest
within the empirical literature on animal behavior
as they represent theoretical models that can furnish
coherent explanations of several key empirical find-
ings (Dayan and Balleine, 2002; Schultz, 2002).

Notwithstanding their importance, the standard
reinforcement learning models suffer of many limita-
tions. From the machine learning point of view, they
require a careful specification of task-specific extrin-
sic reward functions and this limits their degree of
autonomy (Barto et al., 2004). From the scientific
point of view, they have been criticized for at least
two reasons. (1) They do not take into account the
role of internal motivations in modulating the effects
of external rewards: if an agent, be it a real organism
or a robot, has to engage in several different activ-
ities, it needs to be endowed with a complex moti-
vational system which is able not only to guide its
learning processes, but also to modulate its behav-
ior on the fly; one of the most important empirical
phenomena challenging the standard reinforcement
learning framework, ‘devaluation’, demonstrates just
this kind of effects. (2) They conflate the notions
of classical/Pavlovian conditioning and instrumen-
tal/operant conditioning although accumulating em-
pirical evidence is indicating that these are differ-
ent processes that rely on distinct neural systems
and that interplay in complex ways overlooked by
standard reinforcement learning models (as demon-
strated, for example, by the empirical phenomena
of ‘Pavlovian-Instrumental Transfer’ and ‘incentive
learning’, Dayan and Balleine, 2002).

This paper presents a novel computational model
which is strongly rooted in the anatomy and physi-
ology of the mammal brain and starts to addresses
some of these issues. In particular, the model pre-
sented here reproduces the results of an empirical ex-
periment (Balleine et al., 2003) which demonstrates
the phenomenon of devaluation in an instrumental
conditioning task and proposes a coherent picture



about the possible neural mechanisms underlying it.
The model is based on the following hypotheses: (a)
the amygdala constitutes a stimulus-stimulus asso-
ciator at the core of Pavlovian conditioning (Bax-
ter and Murray, 2002; Cardinal et al., 2002); (b)
the cortex-basal ganglia (putamen) pathway, forming
stimulus-response associations, constitutes the main
actor involved in instrumental conditioning (Yin and
Knowlton, 2006); (c) the amygdala-nucleus accum-
bens pathway constitutes another stimulus-response
selector that ‘bridges’ Pavlovian processes happening
in the amygdala and instrumental processes taking
place in the basal ganglia (Baxter and Murray, 2002).
By reproducing the basic results of both normal and
lesioned rats the model provides significant evidence
for these three fundamental hypotheses and, more
importantly, it contributes to clarify the relation-
ships existing between the neural structures and pro-
cesses underlying them.

The rest of the paper is structured as follows. Sec.
2 reports the original experiments addressed by the
model. Sec. 3 describes the robotic setup and the
simulated experiment. Sec. 4 contains a detailed
description of the model. Sec. 5 reports the main
results. Finally, Sec. 6 concludes the paper.

2 Target experiment

The target data addressed with the model are re-
ported in Balleine et al. (2003) which illustrates var-
ious experiments directed to investigate the relations
existing between the manipulation of the value of pri-
mary rewards (devaluation) and instrumental condi-
tioning, and the role that Amygdala (Amg) plays in
them. The present work focusses on ‘Experiment 1’
reported in the article, a standard ‘devaluation test’.

In two preliminary phases of the experiment, eight
sham plus eight rats whose Basolateral Amygdala
complex (‘BLA’) was lesioned were trained in sepa-
rate trials to press a lever or pull a chain to obtain
respectively Noyes pellets and maltodextrin. The
training phase was followed by an extinction test
lasting 20 mins (divided in groups of 2 mins) where:
(1) both manipulanda were present in the experimen-
tal chamber; (2) half of the rats had been previously
satiated with Noyes pellets while the other half with
maltodextrin. The main result indicated that during
the first two minutes of the test non-lesioned rats per-
formed the action corresponding to the manipulan-
dum of the non-satiated food with a much higher rate
with respect to the other manipulandum, even if they
had experienced the two manipulanda together for
the first time. On the other hand, BLA-lesioned rats
did not show any devaluation effect: they performed
the two actions at the same rate. These experiments
clearly demonstrate that BLA plays a fundamental
role in the transfer of the diminished hedonic value of
food to instrumentally acquired behavior. This key

finding, central for clarifying the relationship existing
between Pavlovian and instrumental conditioning, is
the target of the model presented here.

3 The simulated environment, the

robot and the experiments

The model presented here was tested within an em-
bodied system because, as mentioned in the intro-
duction, one of the long-term goal of this research is
to build models that are based on sound anatomical
and physiological neuroscientific evidence and that
at the same time are capable of scaling to function
in realistic robotic setups. Although we are aware
that the role of the ‘degree of embodiment and sit-
uatedness’ of the model and simulations presented
here is rather limited (e.g. the sensors and actu-
ators used are rather simplified, low-level behaviors
are hardwired, etc.), nevertheless the use of a robotic
test forced us to design a model potentially capable
to cope with the difficulties posed by more realistic
setups. For example, the randomly variable dura-
tion of the trials, actions’ execution, and rewarding
effects posed interesting challenges to the robustness
of the learning algorithms of the model.

The model was tested with a simulated robotic rat
(‘ICEAsim’) developed within the EU project ICEA
on the basis of the physics 3D simulator WebotsTM.
The model was written in MatlabTM and was inter-
faced with ICEAsim through a TCP/IP connection.
The robotic setup used to test the model is shown
in Fig. 1 and it is now briefly described skipping ir-
relevant details. The training and test environment
is composed by a grey-walled chamber containing a
yellow lever, a red chain, and a food-dispenser that
turns green or blue when respectively food A or food
B is delivered in it. When ‘pressed’ or ‘pulled’, the
lever and chain make respectively food A or B (the
rewarding stimuli) available at the dispenser.

The simulated rat is a wheel-chair robot equipped
with various sensors. Among these, the experi-
ments reported here use two cameras (furnishing a
panoramic 300 degrees view) and the whisker sen-
sors. The rat uses the cameras to detect the lever,
the chain and the food dispenser, in particular their
presence/absence (via their color) and their (egocen-
tric) direction. The rat uses the whiskers, activated
with one if bent beyond a certain threshold and zero
otherwise, to detect contacts with obstacles. The rat
is also endowed with internal sensors related to sati-
ety for either food A or B (these sensors assume the
value of one when the rat is satiated, and zero oth-
erwise). The rat’s actuators are two motors that can
independently control the speed of the two wheels.

The information fed to the model is only related
to the presence/absence of the lever and chain in
the test chamber and food A and food B in mouth,



Figure 1: Left: A snapshot of the simulator, showing the simulated rat at the center of the experimental chamber,

the food dispenser (behind the rat), the lever (at the rat’s left hand side) and the chain (at the rat’s right hand side).

Right: The architecture of the model.

whereas the other information is used to control
a number low-level hardwired behavioral routines.
These routines, triggered either by the model or di-
rectly by stimuli, are as follows: (1) ‘obstacle avoid-
ance routine’: this routine, triggered by the whiskers,
‘overwrites’ all other actions to avoid obstacles; (2
and 3) ‘lever press routine’ and ‘chain pull routine’:
these routines, activated by the model, cause the rat
to approach the lever/chain on the basis of their vi-
sually detected direction; when the lever/chain are
touched they activate the food delivery in the dis-
penser; (4) ‘consummatory routine’: when the dis-
penser turns green or blue (this signals the presence
of food in it), the rat approaches and touches it (‘con-
summation’ of the food) so causing the perception of
either food A or food B in mouth; the routine ends
after the rat touches the dispenser ten times.

The devaluation experiment is divided in a train-
ing phase and two test phases. The training phase
lasts 8 mins and the two test phases 2 mins each.
Each phase is divided in trials that end either when
the rat executes the correct action and consumes the
food or after a 15 s timeout. In each trial the rat is
set in the middle of the chamber with an orientation
randomly set between the lever and the chain direc-
tion. In the trials of the training-phase either the
lever and food A or the chain and food B are used
in an alternate fashion and the rat is always ‘hun-
gry’ (the two satiation sensors are set to 0). In the
two test phases, the rat is respectively satiated either
with food A (the satiation sensors for food A and B
are respectively set to one and zero) or with food B.
In all trials of the two test phases both manipulanda
are present and the rat is evaluated in extinction (i.e.
without delivery of food). The experiment (the three
phases) was run 20 times with ‘unlesioned’ artificial

rats and 20 times with ‘lesioned’ rats.

4 The model

The model’s input is formed by six neurons activated
by the sensors illustrated in Sec. 3: two neurons
encode the presence/absence of the lever and the
chain (slev and scha), two neurons encode the pres-
ence/absence of food A food B in the rat’s mouth
(sfA and sfB), and two neurons encode the satia-
tion for food A and food B (ssfA and ssfB).

The model (Fig. 1) is formed by three major com-
ponents: (1) a S-S associator, corresponding to Amg;
(2) a S-R static action selector, corresponding to
the sensory cortex-striatum (putamen) pathway (SC,
PUT); (3) a S-S-R dynamic associator, correspond-
ing to the Amg-NAc pathway.

4.1 The amygdala: a stimulus-stimulus as-
sociator

The associator implements Pavlovian conditioning
through the association between CSs and USs (‘stim-
ulus substitution’). In real brains this role seems to
be played by the Amg (Baxter and Murray, 2002;
Cardinal et al., 2002). There are massive recipro-
cal connections between the Amg and several brain
areas, including: inferotemporal cortex (IT), insular
cortex (IC), prefrontal cortex (PFC), and hippocam-
pus (Hip) (Price, 2003; Rolls, 2005; Baxter and Mur-
ray, 2002; Cardinal et al., 2002). Furthermore, Amg
receives inputs from posterior intralaminar nucleui
of thalamus (PIL) (Shi and Davis, 1999). These
connections underlie an interplay between processes
related to perceived (or represented) external con-
text (IT, PFC, Hip) and processes related to inter-
nal states (IC, PIL). In general, Amg can be seen as



playing the function of assigning a subjective valence
to external events on the basis of the animal’s inter-
nal context (needs, motivations, etc.), and to use this
to both regulate learning processes and directly in-
fluence behavior.

The model’s associator, which is considered as
an abstraction of the processes taking place in the
Amg, performs ‘asynchronous learning/syncronous
functioning’ associations. First, stimuli perceived
in different times are associated (CSs are associ-
ated to USs): this associative learning takes place
if USs cause a dopamine (DA) release (see below).
When the association is established, CSs are able to
synchronously re-activate the USs’ representations
in Amg. The associator is composed by a vec-
tor amg = (amglev, amgcha, amgfA, amgfB)′ of four
laterally-connected leaky neurons that process the
input signals as follows:

τamg · ˙amgp = −amgp+ (1)

(slev, scha, (sfA − ssfA), (sfB − ssfB))′+

Wamg · amg

amg = ϕ[tanh[amgp]]

where amgp are the activation potentials of Amg,
ϕ[x] = 0 if x ≤ 0 and ϕ[x] = x otherwise and Wamg

is the matrix of all-to-all lateral connection weights
within Amg. Note that while external stimuli have
a binary representation (0/1 for absence/presence),
internal stimuli modulate the representation of ex-
ternal stimuli. In particular ssfB and ssfB assume a
value in {0, 5} when the corresponding satiation has
respectively a low or high value, and this simulates
the fact that satiation for a food inhibits the hedo-
nic representation of such food within Amg. This
assumption is supported by evidence indicating that
a similar computation is performed in the secondary
taste areas of the prefrontal/insular cortex (Rolls,
2005) connected with Amg. This part of the model
is particularly important because, as we shall see, it
mediates the influence of the shifts of primary moti-
vations on both learning and behavior.

The associator’s learning is based on the onset
of input signals, detected as follows. First, ‘leaky
traces’ tr of the derivatives of amg, trunked to pos-
itive values, are computed:

τtr · ṫr = −tr + CAmg · ϕ[ ˙amg] (2)

where CAmg is an amplification coefficient. Second,
the derivatives of tr are computed: when positive,
these derivatives detect the onset of the original sig-
nals, whereas when negative they detect the fact that
some time elapsed since such onset took place.

The weights between Amg’s neurons are updated
on the basis of the signs of ṫr and the DA signal (see

below). In particular, when (and only when) the
derivative of the presynaptic neuron’s trace is nega-
tive and the derivative of the postsynaptic neuron’s
trace is positive (i.e. when the presynaptic neuron
fires before the postsynaptic neuron) the related con-
nection is strengthened (for all couples of neurons
this condition is encoded in the Boolean matrix L):

∆Wamg = ηamg · ϕ[da− thda] · L (3)

where ηamg is a learning rate coefficient, da is the
dopamine signal and thda is a threshold over which
dopamine elicits learning. DA release (correspond-
ing to activation in the ventral tegmental area, VTA,
and in the substantia nigra pars compacta, SNpc) is
triggered by Amg through the units representing the
hedonic impact of food and by the primary reward
signals received from the peduncolo pontine tegmen-
tal nucleus (PPT) (Kobayashi and Okada, 2007):

τdap
· ˙dap = −dap + dabaseline+ (4)

wamg−da · (amgfA
+ amgfB

)+

wppt−da · ppt

da = ϕ[tanh[dap]]

where ppt = sfA + sfB is the PPT’s primary re-
ward signal. DA drives learning in both the associa-
tor and the action selectors (see Sec. 4.2 and 4.3).

4.2 The cortex-putamen pathway: a static
S-R action selector

The static action selector learns ‘habits’, rigid S-
R associations, through reinforcement learning pro-
cesses. In real brains this function might be imple-
mented in the cortex-mediolateral striatum pathway
involving in particular the Putamen (PUT) (Yin and
Knowlton, 2006). In the model this component re-
ceives slev and scha as input and, on the basis of this,
selects one of the two lever-press/chain-pull actions
(together with NAc, see Sec. 4.3).

The component is formed by four layers of neu-
rons corresponding to four vectors: (1) a visual sen-
sory cortex (SC) leaky-neuron layer: sc; (2) a neuron
layer corresponding to PUT’s encoding of the ‘votes’
for the two actions: put; (3) a neuron layer corre-
sponding to premotor cortex (PM), formed by re-
ciprocally inhibiting neurons that implement a com-
petition for selecting one of the two actions (this
function might be implemented by the reciprocal
thalamo-cortical connections, Dayan and Balleine,
2002): pm; (4) a layer corresponding to motor cortex
(M), representing the selected action with a binary
code: m.

The visual leaky-neuron layer processes the input
signal in a straightforward fashion:

τsc · ṡcp = −scp + (slev, scha)
′ (5)



sc = ϕ[tanh[scp]]

SC is fully connected with PUT. PUT’s (non-
leaky) neurons collect the signals from SC that tend
to represent the evidence (‘votes’) in favor of the se-
lection of either one of the two actions:

putp = W(sc−put) · sc (6)

put = ϕ[tanh[putp + putbaseline]]

The selection of actions is performed on the basis
of these votes (and NAc’s votes, see Sec. 4.3) through
a competition taking place between the leaky neu-
rons of PUT:

τpm · ˙pmp = −pmp + wput−nac−pm· (7)

(put + nac) + Wpm · pm + n

pm = ϕ[tanh[pmp]]

where wput−nac−pm is a coefficient scaling the votes,
Wpm are the PM’s lateral connection weights, and n

is a noise vector with components uniformly drawn
in [−n, n].

When one of the pm neurons reaches an activation
threshold thA, the execution of the corresponding
action is triggered via M :

m = ψ[pm − thA] (8)

where ψ[x] = 0 if x ≤ 0 and ψ[x] = 1 other-
wise. Once the execution of the routine correspond-
ing to the selected action terminates, the connection
weights between SC and PUT, Wsc−put, are modi-
fied according to the dopamine signal (this might be
null in the case the wrong action has been selected):

∆Wsc−put = ηsc−put · ϕ[da− thda] · sc ·m′ (9)

where ηsc−put is a learning coefficient. Note that
here M’s activations were directly used to train both
the PUT and NAc: in the future we plan to use a
more local mechanism based on eligibility traces.

4.3 The amygdala-nucleus accumbens core
pathway: a dynamic (S-)S-R action se-
lector

The dynamic action selector learns (S-)S-R associa-
tions through a reinforcement learning process that
exploits the information encoded as the Amg’s S-
S associations (e.g., the ‘lever-hedonic value of food
A’ association ). In real brains this function might
be implemented by the neural pathway connecting
the BLA nuclei of Amg to NAc (Baxter and Murray,
2002). In the model this component is implemented

as an all-to-all connection matrix Wamg−nac link-
ing the Amg’s hedonic representation of food, amgfA

and amgfB, to the NAc’s (non-leaky) neurons:

nacp = Wamg−nac · (mgfA, amgfB)′ (10)

nac = ϕ[tanh[nacp + nacbaseline]]

NAc’s neurons play the same function as PUT’s
neurons, i.e. they represents ‘votes’ that bias
the action competition taking place in PM. Simi-
larly to SC-PUT connections, Amg-NAc connections
Wamg−nac are modified, after action execution, on
the basis of the dopamine signal:

∆Wamg−nac = ηamg−nac · ϕ[da− thda]· (11)

(amgfA, amgfB)′ · m′

where η(amg−nac) is the learning rate coefficient.
Note that in the experiments reported in Sec. 5 the
lesions of rats’ BLA have been simulated by setting
the Amg-NAc connections Wamg−nac to zero.

The importance of the Amg-NAc dynamic action
selector resides in the fact that its ‘votes’ for the
various actions can be modulated on the fly by the
system’s motivational states, e.g. by satiety for ei-
ther one of the two foods. In general, this mecha-
nisms opens’ up the possibility for the motivational-
sensitive Pavlovian system (mainly the Amg in the
model) to exert a direct effect on actions without the
need to pass through re-learning processes, as it will
be exemplified by the devaluation experiments illus-
trated in the next section. 1

5 Results

This section describes the basic functioning of the
model on the basis of Fig. 2. The figure shows the
activations of various neurons related to the lever
(data related to the chain are omitted as qualitatively
similar) during both the training and testing phases
of an experiment run with a non-lesioned simulated
rat. It also shows the activations of the same neurons
in the two test phases of a lesioned rat.

At the beginning of the training phase, the base-
line activations of PUT and NAc (putlev, naclev), to-
gether with noise, are sufficient to occasionally trig-
ger the execution of an action (mlev) by the compe-
tition taking place in PM (pmlev). When the behav-
ioral routine corresponding to the selected action is
appropriate for the environment configuration (‘lever

1The model’s parameters were set as follows: ηamg =
.015, ηamg−nac = .02, ηsc−put = .02, thDA = .6, thA =
.6, dabaseline = .3, nacbaseline = .3, putbaseline = .3,
τsc = 500ms, τamg = 500ms, τtr = 1000ms, τda = 50ms,
τpm = 500ms, Camg = 50ms, n = .6, wput−nac−pm = .5,

wamg−da = .3, wppn−da = .6, wpm =

„

1 −.5
−.5 1

«

. The

model’s equations were integrated with a 50 ms step.
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Figure 2: Activations of some key neurons of a non-lesioned rat during the a training phase (first block); activations

of the same neurons in two test phases where the same rat was satiated either with food A or B (second and third

block); activations of the same neurons of a lesioned rat in two similar test phases (fourth and fifth block). Trials are

separated by short vertical lines.

press’ in the presence of lever), the dispenser becomes
yellow, the rat approaches it and consumes the cor-
responding food (sfA). The food consumption acti-
vates the internal hedonic representation of food in
Amg (amgfA) and hence the neurons in VTA/SNpc
with the consequent release of DA in PUT. This
drives the learning of the cortex-putamen instrumen-
tal pathway. The effect of these events is that after
a few learning trials the model learns to reliably and
fastly perform the action which is appropriate to the
current context. The progress of learning can be seen
in terms of: (a) the increase of PUT’s votes for the
press lever action (putlev) in the trials in which the
lever is present; (b) the increase of the regularity of
the peaks of the food A amygdala neurons (amgfA);
(c) the DA release in VTA-SNpc (vta− SNpc).

When instrumental S-R associations begin form
due to instrumental learning, the vision of the neu-
tral stimuli of the lever (slev , amglev) starts to be
reliably followed, within a relatively small time in-
terval, by the food perception (sfA) and the conse-
quent DA release (da). This contingency and the
DA signal allow the Pavlovian learning taking place
within Amg to ‘take off’ and form S-S associations
between the lever and Amg’s food A representation.
This is evident from the fact that after a few suc-
cessful trials the amgfA neuron’s activation not only
show a peak when the food A is delivered but are
also pre-activated by the presence of the lever: this
reveals that a Pavlovian association is being acquired
between the conditioned stimulus (lever) and the un-
conditioned stimulus (food). The pre-activation of

the amgfA neuron due to the perception of the condi-
tioned stimulus is responsible for the early DA release
da which anticipates the future delivery of reward:
this mimics an important well-known phenomenon
observed in real animals (Schultz, 2002). The last
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Figure 3: averages and standard deviations of actions

selected by rats in different conditions (S-ND: sham non-

devaluated; S-D: sham devaluated; L-ND: lesioned non-

devaluated; L-D: lesioned devaluated).

important learning process takes place in the amg-
NAc pathway. The rat’s consumption of food A ac-
tivates both the Amg’s hedonic representation of it
(amgfA) and, via the VTA/SNpc, which results in a
strong DA signal. This creates a strong association
between the hedonic representation of food and the



last executed action. The key point here is that once
the S-S associations are formed in the Amg, condi-
tioned stimuli such as the lever can trigger the acti-
vation of the Amg’s hedonic representation of the re-
lated food and, via these, influence PUT’s action se-
lection via NAc. This is shown by the fact that, after
some training, NAc starts to be activated and to vote
for the correct actions (naclev). The importance of
the formation of this Stimuli-Amg-NAc-PM pathway
resides in the fact that it constitutes the fundamental
bridge between the the Pavlovian processes happen-
ing in the amygdala and the instrumental processes
happening in the basal ganglia pathway (cortex–
dorsal striatum–putamen–thalamus–frontal cortex).
We argue that this pathway plays a central role in
the flexibility demonstrated by real organisms. In
particular, it is through this pathway that instant
motivational manipulations that characterize Pavlo-
vian conditioning are able to affect instrumentally
learned behaviors, as in the devaluation experiments
now illustrated.

During the two test phases, the satiety of respec-
tively food A or B are kept at one, i.e. at their max-
imum level (the other satiety level is kept at zero).
The satiety for a food causes a strong inhibition to
the Amg’s hedonic representation of such food. As
a consequence both the direct consumption of that
food and the perception of the conditioned stimulus
previously associated with it cannot elicit the related
Amg’s hedonic reaction. This is shown by the lack
of amgfA’s activation during the second test phase
when the rat is satiated with food A.

The perception of both the lever and the chain
leads PUT to ‘vote’ for both the lever press and
chain pull actions at the same time. This rules out
the influences of the S-R instrumental pathway on
action selection. Note that this experimental condi-
tion was precisely designed by Balleine et al. (2003)
to stop the effects of habits that would otherwise
‘mask’ the motivation-sensitive Pavlovian influence
on action selection. On the other hand, satiation
stops only one of the two influences of the Amg-NAc
pathway on action selection in that it inhibits only
the amygdala representation of the conditioned stim-
ulus which has been satiated (compare the NAclev

activation in the two test phases). The fact that the
Amg-NAc pathway ‘votes’ only for the action asso-
ciated with the non-satiated food breaks the sym-
metry and makes the related action reliably win the
competition in PM (compare the pmlev and mlev ac-
tivations in the two test phases).

The comparison between the lesioned and non-
lesioned conditions (see Fig. 2) reproduces the basic
finding of the target experiment of Balleine et al.
(2003) and confirms the aforementioned interpreta-
tion of the devaluation tests: as it happens in real
rats, a lesion to the BLA pathway linking the amyg-

dala to the NAc prevents the devaluation of food
from having any effect on the action selection pro-
cess. More in particular (see Fig. 3), during the
two mins of test non-lesioned (Sham) rats perform
the action associated to the non-devaluated (ND)
food with 11.2 times on average whereas they per-
form the action associated to the devaluated (D)
food 2.9 times on average (t = 15.7003, df = 19, p <
0.001). On the contrary, BLA-lesioned (Lesioned)
rats select actions randomly: the averages of per-
formed actions associated with the non-devaluated
and the devaluated foods are respectively 6.2 and
6.5 (t = −0.4346, df = 19, p > 0.05). These re-
sults show the plausibility of the hypothesis for which
the Amg-(BLA)-NAc pathway bridges the Pavlovian
processes happening in the amygdala with the in-
strumental processes happening in the cortex-basal
ganglia pathway, so allowing the current state of an-
imals’ motivational systems to modulate on the fly
their action selection mechanisms.

6 Conclusions

This paper presented an embodied model of some
important relations existing between Pavlovian and
instrumental conditioning. The model’s architecture
and functioning has been constrained with relevant
neuroscientific knowledge on the brain structures un-
derlying such processes. The model was validated
by successfully reproducing the primary outcomes
of some instrumental conditioning devaluation tests
conducted with normal and amygdala-lesioned rats.
These tests are particularly important as they show
how the sensitivity to motivational states exhibited
by the Pavlovian system can transfer to instrumen-
tally acquired behaviors.

To the best of the authors’ knowledge, the model
represents the first attempt to propose a compre-
hensive interpretation of the aforementioned phe-
nomena, tested in an embodied model. The works
most closely related to this one are those of Armony
et al. (1997), Dayan and Balleine (2002), Morén and
Balkenius (2000), and O’Reilly and Watz (2007).
The model presented here differs from these works
in that it proposes an embodied model (absent in
all mentioned researches), presents a fully developed
model (Dayan and Balleine, 2002, presented only a
‘sketched’ model), and tackles the issue of the re-
lations existing between Pavlovian and instrumental
conditioning (Armony et al., 1997, Morén and Balke-
nius, 2000, and O’Reilly and Watz, 2007, focussed
only on Pavlovian conditioning).

We are aware that the proposed model is limited
under many respects which will be tackled in future
work. First of all, it has been tested only with an em-
bodied model having simple sensors and relying on
hardwired low-level behaviors. Second, it has sev-
eral limitations with respect to well-known biolog-



ical phenomena: for example, it does not learn to
inhibit the dopamine error signal at the onset of the
USs, as in real organisms (Schultz, 2002; this pre-
vents it to perform extinction and to stop updating
weights, O’Reilly and Watz, 2007), it cannot repro-
duce Pavlovian modulation of the vigor with which
instrumental actions are performed, and it does not
model the triggering of innate actions by Pavlovian
conditioning (Dayan and Balleine, 2002).

Notwithstanding these limitations, the proposed
model represents an important step in the construc-
tion of an integrated picture on how animals’ motiva-
tional systems can both drive instrumental learning
and directly regulate behavior. Constructing such a
picture is of paramount importance not only from
the scientific (i.e. psychological and neurescientific)
point of view, but also from the technological one.
In fact, it might suggest fundamental design princi-
ples for endowing future robots with the behavioral
flexibility that characterizes living organisms.
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