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GRAIL: a Goal-discovering Robotic Architecture
for Intrinsically-motivated Learning

Vieri Giuliano Santucci, Gianluca Baldassarre and Marco Mirolli

Abstract—In this work we present GRAIL (Goal-discovering

Robotic Architecture for Intrisically-motivated Learning), a 4-

level architecture that is able to autonomously (1) discover

changes in the environment, (2) form representations of the

goals corresponding to those changes, (3) select the goal to

pursue on the basis of intrinsic motivations, (4) select suitable

computational resources to achieve the selected goal, (5) monitor

the achievement of the selected goal, and (6) self-generate a

learning signal when the selected goal is successfully achieved.

Building on previous research, GRAIL exploits the power of goals

and competence-based intrinsic motivations to autonomously

explore the world and learn different skills that allow the robot to

modify the environment. To highlight the features of GRAIL, we

implement it in a simulated iCub robot and test the system in 4

different experimental scenarios where the agent has to perform

reaching tasks within a 3D environment.

Index Terms—Intrinsic motivations, Goal formation, Au-

tonomous robotics, Developmental Robotics, Reinforcement

Learning, Hierarchical architecture

I. INTRODUCTION

A
RTIFICIAL agents are continuously improving. More
and more sophisticated robots and powerful algorithms

able to solve increasingly complex tasks are being developed
every year. However, the autonomy and versatility of current
artificial systems are still extremely limited in comparison
to those of biological agents (humans in particular). While
this is not a problem when artificial agents are used to solve
predefined behaviours (e.g. for industrial robots), the lack
of autonomy in present robots prevents them from properly
interacting with real environments where they have to face
problems that are unpredictable at design-time and where it is
not clear which skills will be suitable to solve them [92].

Future robots have to be versatile, capable of managing
different scenarios and form ample repertoires of skills that
can be re-used to solve different tasks [1], [46]. Beside being
an interesting challenge per se, developing truly autonomous
robots can enhance the effectiveness of robot exploitation. If
we think at artificial agents exploring new planets or the deep
abysses of the oceans, it is clear that these robots have to be
designed so that they do not need to rely totally on designers’
knowledge since most of the situations they encounter are
completely unforeseeable. And even in more familiar settings,
such as houses or other human environments, the capabilities
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to adapt to novel situations and to autonomously acquire
new knowledge and skills are fundamental features for future
robots.

For these reasons, we need to provide artificial agents with
the capacity to autonomously discover new actions and to
self-determine which goals to focus on so to learn the proper
skills to accomplish them. Since biological agents are versatile
and naturally-adaptive, looking at the characteristics that allow
them to improve their knowledge and their competence could
provide useful hints to develop intelligent artificial systems
with similar capabilities [23].

A. Intrinsic Motivations

Humans and other mammals (e.g. rats and monkeys) explore
the environment and learn new skills not only following the
drives provided by reward-related stimuli (such as food, sex,
etc.) but also in the absence of direct biological pressure [5].
In particular, novel or unexpected neutral stimuli are able
to modify the behaviour of biological agents and guide the
acquisition of new skills [37]. The mechanisms related to
these processes have been studied since the 1950s under the
name of Intrinsic Motivations (IMs), first in animal psychology
[29], [21], [54], [93] and then in human psychology [17],
[18], [24], [70]. In the last decades, new research in the field
of neuroscience [64], [65], [95], [26] has highlighted some
of the neural mechanisms that seem to be involved in IM
processes. On the basis of these data some bio-inspired/bio-
constrained models have been developed [34], [53], [6], [19],
[27], linking experimental evidence with computational mech-
anisms so to better understand the neural substrate of IMs.
Other neuroscientific evidence [81], [20] reveal the importance
of information-seeking behaviour and mechanisms without
directly referring to IMs. These phenomena have been also
investigated with computational models [16], [35].

The insights provided by IMs have suggested to machine
learning and autonomous robotics new strategies to implement
autonomous agents [8]. In particular, IM learning signals
provide a useful tool to drive the autonomous learning and se-
lection of different skills without any assigned reward or task.
Most of the IM computational models have been developed
within the reinforcement learning framework [84]. Following
the seminal machine learning works of Schmidhuber [79],
[78] and the work of Barto and colleagues [12] most of
these models implement IMs as intrinsic reinforcements based
on some form of “information compression progress” [80],
in particular the prediction error (PE), or the improvement
in the prediction error (PEI), of a predictor that tries to
anticipate the effects of the actions of the artificial system in
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the environment [31], [60], [43], [10], [57]. Other works have
focussed on different IM mechanisms and functions: some
focused on the autonomous acquisition of skills [12], [49], [30]
and the autonomous selection of which skill to train [77], [74],
[51], others on different aspects such as vision [45], speech
development [55] or emotions [58].

Recently some theoretical works have focused on the dif-
ferent typologies of IMs [61], [52], [14] and the way to
implement them [71]. In particular, this literature distinguishes
between signals based on what the system perceives and
knows, called knowledge-based IMs (KB-IMs), and signals
based and what the system can do, called competence-based
IMs (CB-IMs). Recent experimental evidence with robots [74]
suggests that CB-IMs are more suitable than KB-IMs to
drive an artificial system in the selection and acquisition of
a repertoire of skills.

B. The importance of goals

The use of CB-IM signals is strictly connected to the
concept of goal, i.e. a particular state that the system is willing
to achieve. Since competence is always competence in doing
something, CB-IMs are related to the ability of the system in
achieving a goal and are typically implemented as the PEI (or
PE) of a predictor that is trying to anticipate the achievement
of the desired state. Following this idea, in previous works
we discussed [71] and showed [74] the importance of goals
and CB-IMs in driving an artificial system in the autonomous
acquisition of skills. IMs can play the role of guiding the
selection of the task on which the agent is focussing its
learning: as long as the system is improving its ability the
IM signal will motivate the pursuit of the related goal, while
when the agent has acquired the connected skill (or has learned
that such skill can not be acquired) the IM signal will fade
away and the system will be able to explore the environment
and focus on different goals/skills.

The autonomous selection of goals and the autonomous
learning of actions is a necessary step towards more versa-
tile and adaptive agents. However, for a robot to be truly
autonomous it is necessary to be able not only to select its own
goals but also to discover them without designer intervention.
In the “goal babbling” framework [67] the process of goal
formation is tackled by focussing on the boost that goals
can provide to learning based on the advantages of searching
solutions within the task space rather than in the larger joint
space [68], [11]. In these works goals are typically defined as
every possible position of the effectors of the robot (e.g. of the
terminal point of a robotic arm) and so are strictly connected
to the body of the artificial agent.

Differently from goal babbling, in our previous works [71],
[74], [72] and here, we consider goals that are not related
to the position of the robot body in space but to the relation
between the robot and the environment. Animals spend a great
amount of time learning skills that modify the external world.
We postulate that the reason of this is that what really counts
for an agent is to acquire actions that allow it to have a strong
impact on the world: knowing which are the effects of ones
own actions on the environment is an important knowledge

that can significantly improve the versatility and adaptation
of biological organisms [91]. Moreover, empirical research
(e.g. [65], [87], [62]) has typically demonstrated that IMs
are closely related to the unexpected modifications of the
environment and the causes that generate them.

C. Overview

The present work focuses on building an artificial system
that is autonomously able to discover changes in the envi-
ronment and use them to drive the learning of new skills. To
develop such complex functions, it is necessary that the system
has an architecture that guarantees not only the selection
of goals and the learning of the related skills but also the
discovery and the formation of new goals. In a recent work
[72] we implemented a 3-level hierarchical architecture to
control the two redundant arms of the simulated iCub robot
[50] tested in a reaching task within a 3D environment. That
architecture allowed the system to both select the goals to
pursue (through a CB-IM signal) and learn which was the
best arm to use to achieve the different goals.

However, that system still lacked the capacity of au-
tonomously discovering and forming representations of the
different goals. Here we present GRAIL (Sec. II-B) - a 4-
level Goal-discovering Robotic Architecture for Intrisically-
motivated Learning - which allows the robot to (1) au-
tonomously form its own goals on the basis of the perceived
changes in the environment, (2) store events as goals in internal
representations, (3) autonomously select its own goals, (4)
autonomously decide which computational resources to train
to achieve each goal, (5) use the representations of the events
to autonomously recognise the achievement of the selected
goal, and (6) self-generate goal-matching signals that are used
by the system both to motivate its goal-selection and to train
the different levels of the architecture. To the best of our
knowledge, points (1), (2) represent novel mechanisms for the
self-generation of goals. Mechanism (3) has been investigated
also in other works, but with the differences underlined in Sec.
I.B and further discussed in Sec. IV. The use of the processes
(4), (5) and (6) constitutes a novelty in the field of autonomous
open-ended learning. Finally, also the integration of all these
mechanisms and processes represents a novel achievement in
the field of autonomous robotics.

The overall objective of GRAIL is to allow the robot to
autonomously discover different changes in the environment,
represent them as goals, and use these goals to guide the
acquisition of the skills necessary to accomplish them. We im-
plemented GRAIL in a simulated iCub and test its performance
in four different experimental scenarios where we (1) compare
GRAIL with the previous architectures (Sec. III-B), (2) show
the ability of GRAIL to autonomously discover new goals
and adapt in possibly unknown scenarios with unexpected or
changing goals (Sec. III-C), (3) test the system ability to ignore
events that happen independently of robot activity (Sec. III-D)
(4) check the ability of GRAIL (together with IMs) to cope
with stochastic environments (Sec. III-E).
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Fig. 1. The simulated iCub implemented with the FARSA simulator. The
task consists in touching the different spheres positioned in front of the robot.
When touched, the spheres change their colour to green.

II. SETUP

In order to ease reading, the current section describes only
the most relevant features of GRAIL and the experimental
setup, whereas the technical details needed to fully implement
the system and replicate the simulations can be found in the
Appendix.

A. The robot and the experimental setup
To test the system we use a simulated iCub robot imple-

mented with a 3D physical engine simulator called FARSA
(see [47] and http://laral.istc.cnr.it/farsa, Fig. 1). In the exper-
iments presented in this paper, we use the two arms of the
robot each with 4 degrees-of-freedom (the joints of the wrist
and those of the fingers are kept fixed) in kinematic modality
where collisions are not taken into account. The fingers of the
two hands are closed, with the exception of the two forefingers
that are kept straight and their tips used to establish when the
robot touches an object in the environment.

Visual input is provided to the system by the right camera of
the robot (Fig. 2(a)): the eye is kept in a fixed position so that
it can see all the targets. The task consists in reaching different
fixed spherical objects with the fingertips of the forefingers.
The objects are anchored to the world and have a radius of 4
cm: when a sphere is touched it becomes green (Fig. 1, Fig.
2(b)).

B. Architecture and methods
GRAIL is the last achievement of a series of increasingly

complex architectures that we have been developing for au-
tonomous open-ended learning. In [73] we implemented a 2-
level architecture composed of a “selector” that determines the
goal to achieve, and a control layer with different components
(the “experts”) [7] that learn and store the skills associated
to the goals. We referred to this first architecture as a cou-
pled system (CS) since its selector presents a rigid coupling
between goals and experts: each goal unit is associated to an
expert, thus the selection of a goal automatically determines
with which expert the robot pursues it. To improve CS, in [72]

we developed a new 3-level architecture which, decoupling the
selection of the goals from the selection of the experts, is able
to autonomously select both its goals and the computational
resources to achieve them. We called this new architecture a
decoupled system (DS) to underline the difference from the
previous version, and we showed its ability to outperform CS
in a reaching task where it was not clear which was the best
arm (and hence expert) to use to achieve the different targets.

The DS (as well as the CS) needs to know in advance
which are the possible goals to be achieved. This is a strong
limitation if one wants a system that is able to autonomously
interact with complex situations in real environments where it
is not possible to determine at design time not only which
skills will be useful for the robot but also which are the
possible events that the system can produce. GRAIL does
not only select which goal to achieve at each trial and the
expert to use to pursue it, but it is also able to discover
new goals, form representations of the events associated to
the goals, and autonomously check if a goal is achieved [4].
The architecture (Fig. 3) is composed of 4 levels: 1) the
goal-formation mechanism 2) the goal-selector; 3) the expert-
selector, and 4) the experts.

1) The goal-formation mechanism: The goal-formation
mechanism is the main innovation of GRAIL with respect
to our previous systems [73], [72] and existing open-ended
learning architectures. As mentioned in Sec. I-B, we believe
that to improve the autonomy of robots we need to develop an
architecture that guides the system in learning new skills on
the basis of the effects that the actions of the robot have on
the external world. For this reason, we endow GRAIL with a
novel mechanism that is able to autonomously recognise the
changes in the environment and store them as possible goals.
The robot is so able to discover new effects and autonomously
select them through the goal-selector component (Sec. II-B2).
Moreover, the storage of the discovered events allows the robot
to autonomously check if it has achieved the goals that it was
pursuing: confronting the “representation” (see below in this
section) of the selected goal with the actual event that happens
in the environment, the goal-formation mechanism is able to
produce a goal-matching (GM) signal that on the one hand
indicates if the desired state (goal) has been achieved, and
on the other hand represents the learning signal for the entire
architecture (see Sec. II-C for a detailed description of the GM
signal). The importance of the goal-formation and matching
mechanisms, and the ability of the rest of the architecture
to use them to learn and suitably select the skills related
to the formed goals, is that they can work with changes of
the environment that are not envisaged at design time but are
autonomously discovered by the robot with the exploration of
the possible effects of its action on the environment.

The goal-formation mechanism receives a visual input re-
lated to the changes in the environment and allows the system
to form representations of those events. This level is composed
of two elements: (1) a winner-takes-all (WTA) competitive
network [69] whose output, called implicit representation
vector (IR-V), forms an abstract representation of the events
and (2) a map, called the explicit representation map (ER-
M), that stores the actual representations of the events. The
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(a) (b) (c)

Fig. 2. The visual input is provided by the fixed right camera of the simulated robot. (a) The robot camera image of the environment in experiment 1. (b)
The image after a change in the environment determined by the event of one sphere lighting up. (c) The binary image obtained by subtracting images (a) and
(b). Since the image of the event is resized, the final input can be slightly different from the actual change seen in (b).

events are identified as follows: at every time step, the image
of the previous time step is subtracted from the current image
(for simplicity the arms are ignored) so that when there is no
change the resulting image is black (all zeros), while when
a visual change has happened, the pixels corresponding to
the change become white (ones). The resultant binary image
becomes the input to the goal-formation mechanism: Fig. 2(c)
is an example of the input provided by an event, determined by
the difference between Fig. 2(b) and Fig. 2(a). The visual input
determines a double effect: on the one hand it activates the IR-
V (via all-to-all connections) determining through an Hebbian-
like learning rule the association between different events and
different output units (10 in these simulations), and on the
other hand it activates (through one-to-one connections) the
ER-M determining an activation that is topologically identical
to the visual input. These two activations are used to modify
through Hebbian learning the weights projecting from each
unit of the IR-V to each corresponding unit of the ER-M.
Gradually, the connections linking IR-V units, representing an
event, to the ER-M units become able to generate an activation
within it that is identical to the actual event representation in
the visual input map. In this sense, we consider the pattern
stored in those connections as a representation of the event
that the system is able to re-activate when a goal is selected
(Sec. II-B2), even when the event is not perceived.

2) The goal-selector: The goal-selector is composed of
N units (10 in the simulations presented in this paper) that
project with fixed one-to-one connections to the IR-V. At the
beginning of every trial, the goal-selector determines through
a softmax selection rule [84] a winner unit. When a unit
is selected it directly activates the corresponding IR-V unit.
When the experiment starts the units are not associated to
any goal while over time the system discovers new events and
associates them to different units (Sec. II-B1). At the beginning
of each trial the activation of each unit of the goal-selector is
determined by an exponential moving average (EMA) of the
intrinsic reinforcement (the CB-IM signal) for obtaining the
goal that the goal-formation mechanism has associated to that
unit. Since the CB-IM signal (Sec. II-D) is a measure of how
much the system is improving its competence in achieving a
certain goal, the system will select with a higher probability
those goals whose skills have a high learning rate with respect

to those that are not improving or are improving less. Note that
we are using the IM signal for motivation (i.e. as a drive to
select and execute a goal/behaviour) rather than for learning
(i.e. to update connection weights) as in most models using
IMs.

3) The expert-selector: The selector of the experts is com-
posed of MxN units (in the experiment presented in this work
M = 8). Each goal unit is connected to M units, each of
which corresponds to one expert. Half of the experts control
the right arm and half controlling the left arm. Every goal
can be pursued through any expert. At the beginning of every
trial, the winning unit of the goal-selector determines which
set of units of the expert-selector is active. The activation of
the selected set of units is determined by an EMA of the goal-
matching signal (the GM signal, see Sec. II-C). The activation
of these units is used to select the expert to use in the current
trial with a softmax function.

4) The experts: The experts (8 in these simulations) are
implemented as actor-critic networks [15] modified to work
with continuous states and actions spaces [25], [76], although
we did not modify the core formulas of the reinforcement
learning algorithm as done in [25]. The input to each expert
are the angles of the 4 actuated joints of the related arm (3
joints for the shoulder, 1 for the elbow). The actor of each
expert has 4 output units whose activation, with the addition
of noise, is used to determine the motor command sent to each
joint of the active arm (the joints are controlled in velocity).
The expert selected to control the robot in the current trial is
trained through a TD reinforcement learning algorithm [84].

C. The goal-matching signal
GRAIL is able not only to recover the explicit representation

of the goal it is trying to achieve, but also to autonomously
check if the goal is achieved and generate a goal-matching
(GM) signal. The ER-M has a threshold activation (GM
threshold) that can be exceeded only when at least one of
its units is activated both by the IR-V input, representing
the goal that has been selected, and the input coming from
the visual perception of an event. In this way, the threshold
can be exceeded only when the event represented in the ER-
M is both desired (activation from the IR-M) and happening
(activation from the visual input). When the robot discovers a
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Fig. 3. The 4-level hierarchical architecture of GRAIL: (1) the goal-formation mechanisms with the implicit representation vector (IR-M) and the explicit
representation map (ER-M), (2) the goal-selector, (3) the expert-selector, and (4) the experts. The competence-based intrinsic motivation signal is also presented
in the figure, together with the goal-matching reinforcement signal.

new possible goal it needs several presentations of the same
event to modify the weights connecting the IR-V to the ER-
M. When the weights have reached sufficiently high value
(see Sec. III-A and Appendix), we can say that the system
has formed a representation of the goal as the GM signal
can be triggered. From this moment, if the robot determines
the change in the environment that corresponds to the goal
it is pursuing, at least one of the ER-M units exceeds the
GM threshold and the system auto-generates a signal for the
achievement of the goal. On the other hand, if the robot causes
an event that is different from the active goal, no unit of
the ER-M is able to exceed the threshold and the mechanism
generates no GM signal.

The GM signal is used for different purposes: (a) determin-
ing the teaching input of the predictor which contributes to
generate the CB-IM signal (Sec. II-D) reinforcing the goal-
selector, and determining the reinforcement signal that is used
for training both (b) the expert selector and (c) the selected
expert.

D. CB-IM mechanism

The competence-based intrinsic motivation signal driv-
ing the selection of the units of the goal-selector is the
competence-based intrinsic reinforcement signal that we iden-
tified in [74] as the most suitable to drive the selection of
different goals and the acquisition of the related skills. In
particular, the IM signal is the prediction error improvement
(PEI) of a predictor that receives as input the output of the
goal-selector (the selected goal) and produces an output that
can be interpreted as the predicted probability that the event
associated to the selected goal will happen. The predictor is
trained through a standard delta rule using the achievement
of the selected goal as the teaching input (1 for success, 0
otherwise).

E. Overall functioning of the architecture

At the beginning of the simulation the robot has no repre-
sentations stored in the IR-V and the ER-M, so its behaviour
is completely task-independent: the selection of a unit in the
goal-selector has no effect since the system has not discovered
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any event yet. This selection does not even affect the selection
of the experts as there are no goal-expert associations yet. This
implies that the system selects one of the available experts with
a flat probability and the robot explores the environment on the
basis of this expert and the associated arm. At the beginning
of every trial the arm associated with the selected expert is
randomly positioned (the positions where the robot touches
one of the spheres with its forefinger are excluded). Then, as
explained in Sec. II-B4, the arm is controlled on the basis
of the input provided by the position of the joints. The four
outputs of the expert are added a noise value (see appendix
for a detailed description of the noise) and due to the velocity
control of the arms these explore the working space randomly
since at the beginning of the simulation all the weights inside
the experts are set to 0.

When a sphere is touched it lights up, thus generating a
change in the environment. The visual input of the event
determines the activation of the goal-formation mechanism. As
long as the agent has not formed a representation of the goal,
no learning signal nor IM signal is generated by the system.
The more the robot is able to reach the same object, the more
it associates that event to a specific unit in the IR-V, and builds
a representation of it in the ER-M. When a goal is properly
formed (Sec. II-C and Sec. III-A), if the robot achieves the
selected target it is able to autonomously produce the GM
signal (Sec. II-C) that contributes to the formation of the CB-
IM signal (Sec. II-D) and provides the reinforcement to train
the learning of skills.

The process of goal selection is completely autonomous.
At the beginning of every trial, on the basis of the CB-IM
signal the robot autonomously selects its own goal. Due to
the nature of this IM signal, the system is motivated to select
those goals where the robot is improving the skill that allow
it to determine the related event. When the robot is able to
systematically achieve that goal, the IM signal fades away
letting the robot free to explore the environment, discover
new goals, and learn new skills. Note that here the robot
is motivated only to improve its competence (acquiring new
skills), so the autonomous selection of the goals is based
only on this principle. However, GRAIL could be used also
with any other type of motivation that can drive the robot to
autonomously select its goals following different criteria (e.g.
energy harvesting or externally assigned tasks).

Regarding learning, GRAIL undergoes five learning pro-
cesses. Two are associative processes that take place within
the goal-formation component: the first allows the IR-V to
associate implicit representations of the goals to the event
perceived through the visual input; the second associates these
implicit representations to the explicit representations in the
ER-M, so that the system is able to autonomously recognise,
through the GM mechanism, when a desired event is achieved.
The other three ones are reinforcement learning processes
taking place in the other components of the architecture: based
on the intrinsic reinforcement provided by the PEI of the
predictor of the achievement of the selected goals, the goal-
selector learns to select those goals that have the highest
improvement rate; on the basis of the GM signal, the expert-
selector learns to select the expert that better allows to cause

the event corresponding to the active goal; last, the GM signal
is also used to train the selected expert to achieve the desired
goal.

III. EXPERIMENTS AND RESULTS

This section first illustrates the functioning of the goal-
formation mechanism and the generation of the GM signal
(Sec. III-A), then presents the results of the 4 experiments.
When GRAIL is compared to different systems, details of the
architectures with which it is compared are provided in the
presentation of the experimental setup.

The first experiment lasts 40,000 trials, while experiment 2
runs for 50,000 trials and experiments 3 and 4 run for 35,000
trials. Each trial ends when the robot touches a sphere, or after
a time out of 800 time steps, each lasting 0.05 seconds. At
the beginning of every trial the goal-selector selects a goal.
At the beginning of the experiment the units of the goal-
selector are not associated with any event. When the goals
are formed, the selection of a unit associated with a change
in the environment determines which goal the system pursues.
Then the selector of the experts determines which expert (and
hence which arm) is used to control the robot and learn to
cause the event associated with the selected goal. The joints of
the selected arm are then randomly initialised and the next trial
starts. Every 500 trials the simulations are stopped, learning
is switched off, and the performance of the system in all the
reaching tasks is tested. More precisely, to this purpose we
bypass the goal-selector mechanism by directly activating the
units of the goal selector that the robot has associated to the
goals. We do this for 100 trials for each unit/goal. The results
of these tests are presented as the average performance of the
robot (over 10 replications) in achieving the different goals in
the experiments.

A. Goal formation and goal-matching signal
As described in Sec. II-B1, the goal-formation mechanism

generates in the ER-M the representations of the events
discovered by the system. These representations of the goals
are progressively formed if the robot perceives the same event
multiple times during the simulation. As shown in Fig. 4, at
the first presentations of the event the representation of the
goal is still not formed, i.e. the input provided by the IR-V is
not able to activate the ER-M higher than the goal-formation
threshold (red dotted line in Fig. 4). For this reason, even if
the system is able to cause the proper event (here goal 2 of
the first experiment), the visual input of that change in the
environment is not sufficient to make at least one of the units
in the ER-M exceed the GM threshold (green line in Fig. 4).

After some presentations of the same event (18 in this
example), the weights connecting the IR-V to the ER-M
have been modified to reach a level sufficient to form a
representation of the goal. This means that when the system
is able to accomplish the selected goal the activation of the
ER-M provided by the summed input from the IR-V and the
visual input of the event is able to generate the GM signal.

In Fig. 5 a different situation is presented. Here the system
has formed a proper representation of the goal (Fig. 5(a)) so
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Fig. 4. The process of goal formation (related to goal 2 of experiment 1) and
the generation of the goal-matching (GM) signal. Data show the activation
of one unit (related to the selected goal) of the ER-M (y-axis) after different
presentations of the same event (x-axis). The activation of the ER-M is caused
by the summed input provided by the IR-V (black) and the visual input of the
event (light grey). The production of the GM signal (at least one unit exceeds
the GM threshold, indicated by the green dotted line) is possible only when
the activation caused by the IR-V input exceeds the goal-formation threshold
(red dotted line), i.e. when the system has formed a representation of the goal.

that if the robot causes the proper event the system is able
to recognise its achievement and generate the related GM
signal. However, the robot now generates an event that is
different from the one that it is pursuing. The figure shows
the moment when the system is pursuing goal 2 and touches
the sphere related to goal 3 (Fig. 5(b)). The sum on the ER-
M resulting from the representation of the selected goal and
the actual generated event (Fig. 5(c)) reflects two different
patterns corresponding to the two goals (the units of the pattern
corresponding to the actual generated event are more active),
but none of the two is able to make the units of ER-M exceed
the threshold and generate the GM signal.

These results show the ability of the system to gradually
form a proper representation of the events associated to
different goals so that when the system selects a goal it is
autonomously able to “recognise” its achievement and self-
generate a GM signal that is used to motivate and train various
components of the architecture. Moreover, data of Fig. 5 also
show the ability of the robot to discriminate different events
when the caused event does not correspond to the goal that
the system is pursuing.

B. Experiment 1
1) Experimental setup: In the first experiment, we test

GRAIL in a task where the robot has to learn to reach 4
different targets all positioned close to the y-axis that divides
the workspace in left and right (see Fig. 2(a)). All the objects
are reachable by both arms of the robot but it is not known
a priori which is the best solution to achieve each target,
i.e. which arm provides the most efficient way to touch each
sphere.

Here we compare the results of the robot controlled by
GRAIL to those of our previous systems, the CS and the DS
systems. As described in Sec. II-B, in the CS the goal-selector
and the expert-selector are collapsed in a single component

(a) (b) (c)

Fig. 5. The process of goal matching when an event different from the
currently pursued goal is experienced. Data refer to the situation where the
system (a) has selected a goal (goal 2 of condition 1 as in ER-M activation)
but (b) its action determines an event that is different from pursued goal
(visual input of the different event generated by the system). (c) The resulting
activation of ER-M reflects the difference between the goal that the system
is trying to achieve (low activation) and the actual event determined by robot
actions (high activation, but not sufficient by itself to trigger a matching
signal).

with a predefined coupling between goals and computational
resources, so that each expert is rigidly associated to a specific
goal unit. In the current scenario, as often in real environments,
it is not possible to know a priori which is the proper solution
to solve a task, for example here which arm should be
used to achieve each sphere. Thus, in CS the associations
between goals and arm-experts have been based on simple
spatial correspondences. In particular, considering that in this
experiment there are 4 targets, 2 positioned on the left and 2
on the right, the CS has only 4 experts, 2 controlling the right
arm and 2 controlling the left arm. The DS, with its 3-level
decoupled architecture, is able to learn to associate goals and
modules to achieve them but it does not have the mechanism
necessary to discover the possible goals (so this system lacks
the highest level of GRAIL described in II-B1). As CS, this
system has the goals predefined before the experiment so the
goal-selector mechanism is composed of only 4 units, each
one standing for a different goal. Similarly to GRAIL, also
this decoupled system (DS) has 8 experts (4 for each arm) so
that the robot can choose which expert and arm to use to learn
the skills related to the different goals: since it is possible that
the best solution is to reach all the targets using the same arm,
we give the possibility to the system to learn to reach all the
spheres with a different expert controlling the same arm.

This experiment will test if a complex architecture such as
GRAIL is still able to perform better than a 2-level architecture
with fixed goal, and goal-expert associations, in a reaching
task whose solution is unknown at design time. Moreover, we
want to compare the result of DS to those of GRAIL and see
if the autonomous discovery of goals slows down the learning
process.

Our expectation is that, as in our previous work [72], the
DS performs better than the CS. We also expect GRAIL
performance to be lowered by two factors: 1) GRAIL has to
autonomously discover new goals, to learn to associate the
events to the implicit representations in the IR-V and to the
explicit representations in the ER-M, while the DS and CS can
select goals from the beginning of the experiment; 2) GRAIL
has more units in the goal-selector than the other systems (10
vs 4) so that the selection process can be slowed down by units
not associated to any goal. However we believe that GRAIL,
thanks to its decoupled architecture, is able to perform better
(or at least equally) than the CS, while only experiments can
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(a) GRAIL

(b) Decoupled system (DS)

(c) Coupled system (CS)

Fig. 6. Performance of the three systems tested in condition 1. Data refer to
the averages of 10 replications of the experiment. (a) GRAIL. (b) Decoupled
system. (c) Coupled system. The letters R and L in the legends refer to the
positions of the spheres associated to the goals (Right or Left) with respect
to the Y axes that divides the workspace of the robot.

provide a measure of the different performance of DS and
GRAIL.

2) Results: The average performance of 10 replications of
each experiment are shown in Fig. 6. The CB-IM signal is able
to drive all the systems to learn the skills related to the different
goals. As expected, both GRAIL (Fig. 6(a)) and DS (Fig. 6(b))
are able to achieve a high performance on the 4 tasks (⇠95%)
faster than CS (Fig. 6(c)) which reaches that performance only
at the end of the experiment (⇠30,000 trials). Although DS
is slightly faster (⇠12,000 trials) than GRAIL (⇠17,000), the
difference between the two systems is minimal considering
that DS (as well as CS) has all the goals set at design time

Fig. 7. Number of replications in which GRAIL, DS, and CS (first, second
and third number in each cell, respectively) use the left or right arm to reach
each object.

Fig. 8. Performance of GRAIL in the first experimental condition where the
goal-selector component of the architecture is composed of 4 units instead of
10. Average data on 10 replications of the experiment.

while GRAIL has to autonomously discover them (as shown
in Sec. III-A).

If we look at Fig. 7, we can understand why GRAIL and DS
perform better than CS. Data show the arms that the 3 systems
use to achieve the different goals in the 10 replications of the
experiment. Where all the systems use the same arm (object
2 and object 4) CS is the fastest system since GRAIL and DS
have to learn to select the correct arm while CS has goals and
experts associated at design time. However, the advantages of
being able to autonomously associate computational resources
and tasks are evident for those goals for which it is not
possible to determine a priori which is the best arm to use.
The performance of CS is drastically slowed by the learning
of goal 1 and goal 3, while GRAIL and DS autonomously
recognise that those objects can be more easily reached with
the arm opposite to their position in the workspace and hence
take much less time to learn and accomplish those goals.

As shown in Fig. 7, GRAIL learns to achieve the goal
related to the second object 8 times (on 10 replications) with
the right arm and 2 times with the left arm. Since data on the
3 experimental conditions show that the fastest solution is to
reach object 2 with the right arm, this explains why the average
performance of GRAIL on goal 2 (see Fig. 6(a)) is slightly
lower than the performance on the other goals. However,
the lower performance is limited to the 2 left-arm-solution
replications, while performance is high when the suitable arm
is selected.

This is confirmed by the results of a test in which we provide
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Fig. 9. Box plots of the performance of the tested conditions (10 replications
each) with respect to the number of trials needed to achieve an average
performance of 95% on the 4 tasks of experiment 1. In addition to GRAIL,
DS and CS we also test three different versions of GRAIL: with only 4
goal units (GRAIL4G), with 16 experts (GRAIL16Ex) and with 32 experts
(GRAIL32Ex). The whiskers of the box plots indicate the minimum and
maximum values with the exception of the outliers when present.

the IR-V and the goal-selector of GRAIL with only 4 units
rather than 10 (Fig. 8). In this condition the system reaches
high performance with all objects similarly to DS (⇠95% in ⇠
12,000 trials). Moreover, these results show that the process of
goal formation per se does not slow down the learning process
of the system: rather, it was only the higher number of goal
units that slowed down the learning of GRAIL in the original
experiment.

To test the scalability of GRAIL with respect to the number
of its experts, we perform two further tests (10 replications
each) where GRAIL is provided with 16 and 32 experts, re-
spectively. The performances of the system in these conditions
are reported in Fig. 9 and show that increasing the number of
experts does not impair the velocity of the system with respect
to the version of GRAIL with only 8 experts.

To provide a statistical analysis of these results, we mea-
sured the time (number of trials) needed by the robot to
achieve an average performance of 95% in the 4 tasks (all
the conditions are able to achieve a ⇠100% performance so
we considered the achievement of 95% a good measure of the
learning success). The box plots of the different conditions
are presented in Fig. 9. A one-way ANOVA reveals significant
differences among the tested conditions (F(5,54)=72.48, p <
0.0001). We then run a post-hoc test to support the results. In
particular, we find significant differences between DS and CS
(p < 0.001), GRAIL and CS (p < 0.001), and GRAIL and DS
(p < 0.01). As previously underlined, no significant difference
was found between GRAIL with 4 goal units (GRAIL4G) and
DS. Moreover, no significant differences were found between
the version of GRAIL with 8 experts and those with 16
(GRAIL16Ex) and 32 (GRAIL32Ex) experts, thus confirming
the capability of GRAIL to scale up with respect to the number
of computational resources provided to the system.

C. Experiment 2

1) Experimental setup: In the second experiment we want
to test the properties provided to GRAIL by the goal-formation
mechanisms (Sec. II-B1). We put the robot in a new scenario

Fig. 10. Experiment 2 seen from the robot perspective. The 2 grey spheres
are “normal” targets present from the beginning of the simulation. The yellow
sphere is present from the beginning of the simulation but becomes active (it
can be lighten up by the robot touching it with its forefingers) after 15,000
trials. The blue sphere is not present at the beginning of the simulation and
appears after 25,000 trials. Yellow and blue colours are only used in this
figure to identify the different spheres.

Fig. 11. Performance of GRAIL in experiment 2. The legend indicates the
moment from when the goal can be discovered: from the beginning of the
experiment (Start) or after a certain amount of trials. Average data on 10
replications of the experiment.

that is intended to mimic (although in a very simple way) some
of the situations that an artificial agent could encounter in a
real environment, where actions may turn out to have different
effects in different moments or where new possible goals may
appear during the learning.

The task still consists in learning to light up different
spheres but this time the goals are not all present from the
beginning. When the experiment starts, the robot finds 3
spheres in its workspace but only 2 of them can be lighten
up (Fig. 10, grey spheres). Later (after 15,000 trials) a third
sphere (Fig. 10, yellow sphere) becomes active providing a
new possible event/goal for the robot. Moreover, at a certain
point of the experiment (after 25,000 trials) a fourth sphere
(Fig. 10, blue sphere) is introduced in the environment adding
a further goal to be discovered.

The expectation is that GRAIL is able to manage this
complex situation, thus showing that a system that is able to
autonomously discover new goals has an improved versatility
and adaptation. This provides a clear improvement with re-
spect to the previous architecture (the DS system [72]) which
is not able to manage situations where goals are not known at
design time.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

Fig. 12. Experiment 3 seen from the robot perspective. The yellow sphere
activates independently of the robot actions with a probability of 0.15. The
red sphere is outside the workspace of the robot and activates independently
of its actions with a probability of 0.20. The other spheres activate when
touched by the robot as in previous experiments. Yellow and red colours are
only used in this figure to identify the different spheres.

2) Results: Fig. 11 shows the performance of GRAIL in
experiment 2 (average performance of 10 replications of the
experiment). In the first 15,000 trials only goal 1 and goal
3 can be achieved, and the robot is able to learn the related
skills. After 15,000 trials also goal 2 is available. The average
performance decreases as now it is computed also on the new
task which has to be learnt, but in few trials (⇠10,000) the
robot is able to discover the new event, form a new goal
related to it, and learn the related skill. After 25,000 trials
a new sphere is added. After a second decrease of the average
performance (now calculated over 4 tasks) the robot is able to
form the last goal and train the last skill and achieve a high
performance (close to 100%) in all the tasks.

As expected, GRAIL is able to manage such a complex
situation discovering the new goals as they become active or
appear in the environment, providing the goal-selector with
new associated nodes that can be selected, on the basis of the
CB-IM signal, and guide the learning of the related skills.

D. Experiment 3

1) Experimental setup: GRAIL is developed to recognise
and form representations of changes in the environment so to
form a set of possible goals that the robot can select to learn
the skills necessary to achieve them. However, the mechanism
of goal discovery implemented in GRAIL could have problems
in real environments where many changes happen without the
intervention of the robot. In particular, the agent could be
distracted by these changes and focus on learning to cause
them although they do not depend on its activity.

To evaluate if GRAIL is able to cope with these situations,
we test the robot in a setup where there are 4 spheres (Fig.
12): 2 spheres are activated by the robot touch as in previous
experiments; the other 2 spheres, one positioned within the
workspace of the robot and the other one outside (yellow and
red sphere in Fig. 12, respectively), are not affected by the
robot activity and have a probability of respectively 0.15 and
0.20 of activating during a trial.

The expectation is that GRAIL forms representations of the
random events and associates them to the goal-units in the
goal-selector. At the same time, the system should be able to

Fig. 13. Performance of GRAIL in experiment 3. The legend indicates when
the goals are normal or independent of the robot activity (random goals,
rnd). Since in this scenario the robot can only learn two skills, the average
performance of the system is calculated on the achievement of the two goals
depending on robot activity.

avoid the distraction provided by the random events and learn
the skills that allow the activation of the 2 spheres that can be
affected by its actions. The reason is that GRAIL is driven by a
CB-IM signal based on the improvement of competence: since
there cannot be any improvement in causing the activation of
the random spheres, the robot should focus on learning the
skills related to the other 2 spheres.

2) Results: Fig. 13 presents the average performance of
GRAIL in 10 replications of experiment 3 with respect to the
goals stored by the goal-formation mechanisms. As expected,
the system has formed also representations of the random
events (for this reason they are included in Fig. 13) although
they do not depend on the activity of the robot.

Notwithstanding the formation of “distracting” goals, the
learning process of GRAIL is not impaired: as we can see
from the performance on goal 1 and goal 2 the robot is able to
learn to reach for the related spheres achieving a high average
performance on the 2 learnable tasks. Instead, GRAIL does not
learn to reach for the sphere related to goal 3 which, although
randomly activated, is positioned within the workspace of the
robot (the sphere associated to goal 4 is positioned outside the
workspace and cannot be touched).

These results confirm that the CB-IM signal based on the
improvement of the competence of the robot is able to guide
the learning of skills even in environments where there are
events that are not dependent on the robot activity. Indeed,
the PEI CB-IMs motivates the system to train the skills that
can be improved whereas those related to random events are
not pursued by the robot.

E. Experiment 4

1) Experimental setup: The last experiment (Fig. 14) tests
if GRAIL is able to cope with events that have a stochastic
response to the actions of the robot. Since the system. is driven
by an IM signal related to the competence in the skills that it
is learning, there might be the possibility that if the agent is
involved in performing an action that has a stochastic effect
it gets stuck in trying to improve an ability which cannot be
improved.
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Fig. 14. Experiment 4 seen from the robot perspective. The black sphere
activates only the first 10 times it is touched by the robot. The red sphere
activates with a probability of 0.75 when the robot reaches it. The last sphere
is a normal object that lights up every time the robot touches it with its
forefingers. Red and black colours are only used in this figure to identify the
different spheres.

Fig. 15. Experiment 4: average performance of 10 replications of the
experiment of the system driven by the PEI CB-IM signal. Data refers to
the two goals achievable by the system. The numbers next to the two goals in
the legend refer to the probability of the two goals to occur when the robot
touches the related sphere.

For this reason we test GRAIL in a new experimental setup
where there are 3 spheres: one is a normal sphere that is
activated by the robot touch (Fig. 14, grey sphere); another is
a stochastic sphere that is activated with a probability of 0.75
when touched (Fig. 14, red sphere); the last one is a sphere
reachable by the robot but that lights up only for the first 10
times that is touched by the robot (Fig. 14, black sphere).

To demonstrate the advantage of using a PEI signal, in this
experiment we compare the results of GRAIL with those of
an identical system whose intrinsic reinforcement signal is
determined by the simple prediction error (PE) of the predictor
of goal achievement. The importance of this test resides in the
fact that in our previous works [71], [74] we found that in
non-stochastic environments the PE generates a stronger and
more stable signal for guiding skill acquisition with respect
to PEI, so the advantage of PEI over PE in the particular
setup used here should not be given for guaranteed. For this
reason, we wanted to test both mechanisms in the current
setup and also (and more importantly) to verify their behaviour
when working in concert with the other various mechanisms
of the architecture, including learning mechanisms that have
differential learning speeds.

Our hypothesis is that the CB-IMs signal based on the im-

Fig. 16. Experiment 4: associations of the 10 units of the goal-selector with
the actual goals. Only the two goals that the system can perform have been
associated to the units of the goal-selector. No unit has been associated to the
event related to the sphere that can be lighten up only for the first 10 times
that it is touched. Data refer to two representative replications of the system
driven by the PEI signal and the PE signal.

Fig. 17. Average performance on 10 replications of the experiment of the
system driven by the PE signal. Same data as Fig. 15.

provement of the prediction error (PEI) is able to manage the
uncertainty of this setup, as suggested by previous literature
[78], [60]. In particular, we expect that the robot is able to learn
to achieve not only the normal sphere but also the stochastic
sphere without getting stuck on it, differently from the PE-
driven system that we expect to be unable to cope with this
situation. Moreover, with the third sphere we check whether,
as desired, only events that occur a certain number of times
are able to become goals for the system. Indeed, a sphere that
only lights up few times should not be stored with the other
representations of goals as it represents a transient action-
outcome contingency.

2) Results: Fig. 15 shows the average performance of 10
replications of the experiment. The robot is able to properly
learn to activate the two spheres that depend on its actions
(object 1 and object 2). Although there is a stochastic target
that can be lighten up only with a probability of 0.75, the
robot is able to learn the related skill (goal 2 in Fig. 15)
and then focus on discovering and learn the other task (goal
1). Moreover, if we look at Fig. 16 we can see that the
system does not assign any goal unit to the event that only
happens few times. This guarantees that the system only forms
representations of events that have a minimum reliability.

The problem that such a stochastic environment can give to
a system driven by an IM signal is clear when we test GRAIL
using a prediction error (PE) signal instead of the prediction
error improvement (PEI) signal. Also in this case the system
does not assign any of the units of the goal-selector to the event
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(a) (b)

Fig. 18. (a) Performance of the PE system in a replication where it first focus on the stochastic goal. (b) Performance of the PE system in a replication where
it first focus on the normal goal.

that only occurs the first few times at the beginning of the
experiment (Fig. 16). However, if we look at the performance
of the system driven by the PE signal (Fig. 17) we can see that
the robot may get stuck in trying to improve skills that cannot
be further improved: the agent is able to properly learn the
skill related to the stochastic goal, while it only achieves an
average performance of ⇠50% (on average in 10 replications)
on the skill related to the “normal” sphere.

The reason is that in replications where the robot focusses
first on the stochastic goal (Fig. 18(a)), even after it has learnt
the related skill it continues to receive a PE signal that rein-
forces the selection of the associated unit in the goal-selector.
This is due to the fact that for the stochastic goal the predictor
learns to generate, on average, a prediction of 0.75, which
makes the system keep receiving a reinforcement (prediction
error) of about 0.25 every time the goal is achieved, thus the
goal-selector never stops to select that goal. Differently, when
the robot first focusses on goal 1 (Fig. 18(b)), it can learn both
skills since the first goal has not a stochastic activation and,
when the related skill has been learnt, the predictor is able to
cancel the related IM signal thus allowing the agent to switch
to learn the skill related to the second goal (which eventually
has been already discovered). Instead, when the PEI signal is
used the predictor generates a prediction close to 0.75 as in
the PE system, but this time the intrinsic reinforcement fades
to 0 when the predictor is not able to improve its prediction
anymore.

IV. DISCUSSION

In this paper we presented GRAIL, a Goal-discovering
Robotic Architecture for Intrinsically-motivated Learning.
GRAIL is an autonomous system that, to the best of our knowl-
edge, for the first time is able to assemble in an integrated
architecture different mechanisms that are necessary to have
truly autonomous open-ended learning robots. In particular,
with its four levels GRAIL is able to autonomously: (1)
discover changes in the environment that the robot can cause
through its own action; (2) form representations of the goals
corresponding to those changes; (3) select one goal to pursue
at each moment on the basis of the competence-based IM
signal; (4) select suitable computational resources to achieve

the selected goal; (5) monitor the achievement of the selected
goal; (6) self-generate a learning signal when the selected goal
is successfully achieved.

We tested GRAIL in a 3D, 4DoFs task with a two-armed
simulated iCub robot, where the robot has to reach for different
targets. In particular, we performed 4 experiments to test
different capabilities of the system.

In the first experiment (Sec. III-B) we compared GRAIL
with two different systems, a 3-level decoupled architecture
(DS) and a 2-level coupled architecture (CS): the better
performance of GRAIL and DS with respect to CS confirms
the importance of providing the robot at least with a 3-level
decoupled architecture that allows the system to both select
its goals and search for the better computational resources to
achieve them.

In the second experiment (Sec. III-C) we focussed on the
importance of the higher level of GRAIL that allows the robot
to autonomously discover new goals without any intervention
by the programmer. This is far beyond what the 3-level DS
architecture can do: indeed, in a scenario where possible goals
are not known at design time, only a system like GRAIL is able
to discover new events and adapt to a dynamic environment
where goals can appear or modify during time.

In the third experiment (Sec. III-D) we tested GRAIL in a
setup where some events happen independently of the robot
activity. Although the system forms goal representations of
these events, the learning process of GRAIL is not impaired
thanks to the CB-IM signal based on competence improvement
that motivates the robot to focus only on those skills related
to the events that can be caused by the robot.

In the fourth experiment (Sec. III-E) we tested GRAIL
ability to cope with environments where the actions of the
robot have a stochastic effect on the world. In particular, we
tested the importance of using an IM signal based on the
prediction error improvement (PEI) that, differently from a
signal based on the simple prediction error (PE), disappears
when the system has reached maximum competence, thus
preventing the robot from getting stuck in trying to improve
skills that cannot be improved.

GRAIL is linked to other works in the field of autonomous
learning that underline the importance of goals for the au-
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tonomous development of artificial agents and in particular
for skills learning. At the same time, our approach to goals
differs from previous systems proposed in the literature.

The option framework [85] implements goals as the ter-
mination condition of an option policy. However, the works
in this framework have mainly focused on discrete state and
action domains [12] possibly with pre-established goals [82].
Differently from this, GRAIL has the ability to autonomously
discover goals and learn skills without any intervention of
the programmer in continuous domains. Some efforts have
been made towards this direction in the field of hierarchical
reinforcement learning [13] but some of these works [48], [2],
[41] focus on searching for sub-goals on the basis of some
sort of externally given tasks. In [42] the system is able to
perform a sort of representation learning, but starting from
pre-assigned abstraction that comprehend all possible object-
effector associations. Other systems are able to set their own
goals without being externally assigned any task but some
of them focus on the acquisition of low-level motor skills
relying on sub-optimal KB-IMs [56] (see [71] and [74] for
a comparison between different typologies of IM signals), or
they are implemented in disembodied agents [90], [49].

In [49] the author presents an interesting system where CB-
IMs are used to guide a two-level architecture in selecting its
goals and training the related options. The system enlarges
the repertoire of possible actions through a novelty-seeking
“introspection” level that is able to improve the ability of
the system in focusing on more complex goals and efficiently
learning the related skills, providing also a strategy to delete
those skills (options) that had become useless. The setup
used in that work is a discrete grid-world scenario with a
virtual agent that learns to select its actions using a (growing)
repertoire of “tools” that turn out to be useful in specific
states. This is different from our setup, where we use a 3D
environment with a 2-arm 4-DOFs simulated robot that has not
only to select its own goals but also to learn how to perform the
low-level actions needed to control the robot arms to achieve
the goals.

The goal-babbling framework (Sec. I-B) has underlined the
importance of goals in the optimisation of learning processes
in high-dimensional action spaces involving redundant robot
controllers [11], [68], shifting the exploration of the artificial
agents from the motor-space to the task-space. These systems
are even able to autonomously discover and set new goals.
However, in these works goals are considered as states related
only to the body of the robot. This kind of goals can drive
a robot to learn to control its own body and form a model
of it, but they cannot drive the acquisition of skills related to
changes in the external environment, which is what we are
interested in here.

In [66] the proposed system, using goal babbling, is able to
autonomously identify an object as a salient element of the en-
vironment, but the reward function is designed as the distance
between the robot effector and the object: in this way even
if there are no effects in the environment, the agent obtains a
reinforcement signal that guides its actions in a reaching task
that is in this way supervised by the programmers. Moreover,
if the interaction with an object has no effects, the agent is still

reinforced to reach for it. Our idea is that the reward function
should not be connected to the saliency of an object per se,
but to the fact that the robot actions causes relevant changes in
the environment. Importantly for the autonomy of the system,
note that, although simple, the mechanisms of event-detection
and goal-formation implemented in GRAIL are general and do
not depend on the particular events scheduled for this specific
setup. Thus, if a new action-triggered event is introduced in
the environment, the system, without any change, would be
already able to detect it and form a new goal corresponding
to it.

In this respect, our approach can be considered as comple-
mentary to goal babbling. We use goal discovery and goal
selection to learn low-level skills (here reaching) through
motor babbling exploration. The goal babbling approach seems
to be more efficient to learn skills at such a low level and so
it might be employed in our architecture. Once learnt, those
skills could represent the motor building-blocks to acquire
higher-level skills, identified through an architecture such as
GRAIL that discovers (and sets) its goals on the basis of the
events that modify the environment external to the robot.

In this implementation of GRAIL we do not address the
issue of abstraction in relation to goals (see [66]). In particular,
a key enhancement of GRAIL would be to endow it with the
capacity to form abstract goals, namely goals encompassing
a set of the environmental states having in common some
relevant features.

An important feature of GRAIL (shared with our previous
DS architecture [72]) is the decoupling between the selection
of the goals and the selection of the computational resources
(here the experts) with which the system tries to achieve the
selected goals. The importance of this ability is shown in
experiment 1 (Sec. III-B) where only a decoupled system
is shown to be able to properly discover the most suitable
strategy to achieve a task. However, the setup used here offers
a limited choice with respect to both the effectors (the robot
can interact with the world only with the two arms) and
the computational resources (all the experts are identical). In
future works it would be interesting to (1) test GRAIL in more
complex scenarios and provide the robot with a wider range of
effectors (e.g., the control of fingers); (2) implement different
experts that vary in the composition of their input, for example
using different preprocessing features; (3) implement experts
that differ in their internal structure (e.g. the number of units).
These differentiations of the experts provide a wider choice
of resources to the selection mechanism of the architecture.
Since GRAIL is able to autonomously select the most efficient
experts, increasing the variability of the experts and providing
the system with wider choices can result in an improvement
in learning speed and performance.

GRAIL shares also some features with previous systems
that used actor-critic experts within a two-level hierarchical
architecture, but it has also important differences with respect
to them. A first system [3] shares with GRAIL the use of
actor-critic experts. However, these experts are used to solve
different parts of a whole complex navigation task that is
segmented by an “expert selector” neural network on the basis
of the specialisation and capacity of experts to solve those
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parts (these mechanisms have been substantially improved in
following works, see [22], [88], [89]). This challenge has
also been faced by a similar system [36] that used actor-
critic experts to act in the different parts of the whole task
but showed the advantages of using unsupervised learning
processes (a Kohonen network) to segment the tasks in sub-
parts. All these systems, however, can only solve extrinsically
rewarded tasks and do not have the capacity of self-generating
goals and pursuing them through IM learning signals as
GRAIL does.

A limitation of GRAIL resides in the implementation of
its lower level components. The experts controlling the arms
of the robot are implemented as classical actor-critic modules
(e.g. implemented with an expanded code of the input and a
learning linear component) which are known to be sub-optimal
in robotics. In particular, the learning algorithms used to train
those implementation of the actor-critic are considerably slow
to be used with real robots. A solution to this problem can rely
on the use of other parametrized models to encode the policies,
for example Dynamic Movement Primitives that are dynamical
models capable of producing whole discrete or rhythmic stable
trajectories (e.g., [33]), and efficient policy search algorithm
to search the parameters of such policies (e.g., [38]).

In the current implementation of GRAIL the goal-formation
process does not affect the selection of motor actions that is re-
inforced (motivated) only after the actual formation of the goal
and the consequent generation of the matching signal. This is
due to the use of a reinforcement signal that is determined
only by the achievement of the goals and by competence-based
IMs. To cope with this limitation and speed up the learning
process, in future works we could use two different solutions.
The first one does not require a modification of the architecture
of the system: we could simply speed-up the goal-formation
process by modifying the learning rates that determine the
identification of a new goal in the IR-V and the formation
of the related representation on the ER-M. A second solution
could rely on providing GRAIL with both competence-based
IMs and knowledge-based IMs, where the latter could play
either or both of the following two roles: (1) identify which
events are unexpected, so that the goal-formation mechanism
will be activated not for every event, but only for those changes
that are still novel or unpredicted by the agent; (2) through
signals based on these events, provide an “early” intrinsic
reinforcement that is able to modify the behaviour of the agent
before the actual formation of the goal, biasing the repetition
of those actions that determined interesting events.

In an open-ended, intrinsically motivated architecture such
as GRAIL, a possible problem could be the generation of
an overwhelming large number of goals. Not all the effects
that an agent can produce in the environment are necessarily
useful for the formation of adaptive actions. While this is not
a problem affecting robots tested in laboratory-like scenarios,
this is very likely to occur in real environments. For this rea-
son, future autonomous goal-discovering architectures should
adopt strategies to limit the formation of new goals and/or to
eliminate previously formed ones. Biases to goal formation
can be provided both by the system itself and by external
users: on the one hand, the system can form general categories

(or structures) of similar goals with proven value (e.g. goals
that provide high control over the world or goals that allow
the achievement of some extrinsic rewards) and prioritise the
formation of new goals that fit those categories; on the other
hand, if robots are used for particular tasks or in particular
situations, human programmers could bias the value system of
the architecture so as to privilege the interactions with some
particular objects or locations.

Moreover, in real environments many little changes con-
tinuously happen due to noise: these minor changes would be
considered by the current implementation of GRAIL as events
and would cause goal proliferation. In this work we were
not interested in building a sophisticated event-detector, but in
future implementations of the system, especially if real robots
are used, we will use suitable filters that would prevent the
system from considering as events all minor changes caused
by noise.

A further limitation of GRAIL dwells in the visual input
and attentional mechanisms, which are very simple and un-
derexploited. Indeed, they could be exploited to improve two
different aspects of the system. First, it could enhance the
exploitation and learning of skills. In particular, the visual
input could be sent to the controllers: the possibility to learn
to reach where the eye is foveating [32], [75] would allow the
robot to reuse the skills learnt with a certain objects to interact
with other objects located in different positions. Second, vision
and attention could support the discovery of new goals: using
visual processing techniques such as object recognition [44],
[86] and active vision [9], [59] strategies the system could
find where objects are located in the space, and also identify
novel items between them, so as to focus its exploration in
those parts of the environment to speed up the discovery of
interesting events.

An element that can influence the open-ended learning na-
ture of the system is the complexity of the goal representations.
In the scenarios presented in this work the events are simple
as they correspond to spheres that change their colour in one
simulation step. If the goal-images that the system has to store
are composed of more complex patterns or variations involving
several time steps, the process of goal formation would need
more sophisticated goal detection component. For example,
the identification of interesting events could be provided by
more sophisticated algorithms such as Slow Features Analysis
(SFA) [94], [39], that is able to identify complex events from
a visual stream input (see [40] for an example where SFA and
IMs are integrated to foster skill acquisition).

Finally, GRAIL is developed to focus on learning very
simple skills such as reaching. However, a true challenge
for autonomous robotics, beyond the autonomous discovery
and selection of goals, is to build artificial systems able to
learn and actuate a true hierarchy of different (and complex)
skills, possibly exploiting goals that can recall each other or
forming higher level goals from the connection of previously
discovered ones. Some efforts have been attempted towards
this direction [7], but many of them remain at an abstract level
of implementation [13] and others only now start to exploit
the power of goals to implement these processes [83].
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APPENDIX

This appendix provides the details necessary to reproduce
GRAIL and the simulations described in the paper. The visual
input of GRAIL consists in the perception of changes in the
environment (events) provided by the camera of the right eye
of the robot. The camera input is a 320x240 RGB pixel image
downsampled into an 80x60 RGB pixel image. The events (in
our experimental setup taking place when a sphere lights up)
are identified by an 80x60 binary image (black and white)
obtained subtracting pixel by pixel two consecutive frames.
When an event occurs (i.e when the binary image has at least
one activated pixel), the map is normalised (norm equal to
1) and given to the WTA competitive network as input. To
prevent the robot from being “distracted” by its own actuators,
we detect the arms and the hands based on a blue colour not
used for other elements of the setup; in particular, when such
colour is detected in pixels of either one of the two images
used for change detection, we exclude the detection of change
in correspondence to such pixels.

Each input unit i is connected with all the 10 units of
the vector composing the output of the WTA network, the
IR-V. Each weight wji linking input unit i to output unit j
of IR-V is initialised at the beginning of each experiment
with a random value chosen in [0, 0.1] and then each set of
connection entering one output unit j are normalised to 1. The
activation of each output unit j is computed as the weighted
sum of the input units. The connection weights of the winning
unit j, and only this, are modified as follows:

�wji = ⌘ xi (1)

where wji is the weight linking input unit i to the winning
unit j, ⌘ is the learning rate of the WTA network set to 0.3
and xi is the activation of input unit i. After the modification,
the set of weights projecting to j from every input units is
normalised to 1.

The same visual input of the event projects not only to the
WTA network but also, with fixed one-to-one connections set
to 0.7, to the ER-M. The activations of the IR-V and the ER-M
determine the modification of the connections projecting from
each unit of IR-V to all the units of ER-M. The connection
weight vji connecting IR-V unit i to ER-M unit j is updated
through a Hebbian rule (with decay and postsynaptic gating
[28]):

�vji = ⌘hbxj(xi � ⌫) (2)

where ⌘hb is the learning rate set to 0.08, xj is the activation
of ER-M unit j, xi is the activation of IR-V unit i (1 for the
winning unit of the WTA network, 0 for the others) and ⌫ is
a value set to 1

n where n is the number of the units of IR-V
(here 10).

The weights connecting IR-V to ER-M are set to 0 at the
beginning of the each simulation and their maximum value is
set to 0.3. When a unit is selected by the goal-selector (Sec.
II-B2), the information is sent to the IR-V and the active unit
determines the activation of the ER-M. The units in the ER-M
have a goal-matching (GM) threshold activation set to 0.95:
if at least one of the units exceeds that threshold, the system

generates a signal for the achievement of the goal (the GM
signal).

The goal-selector comprises 10 units. At every time step it
determines through a softmax selection rule a winning unit.
The probability of unit k to be selected (pk) is:

pk =
exp

⇣
Qk

⌧

⌘

Pn
i=0 exp

⇣
Qn

⌧

⌘ (3)

where Qk is the value of unit k and ⌧ is the softmax
temperature, set to 0.008, that regulates the stochasticity of
the selection. In experiment 4 (Sec. III-E), in which we tested
GRAIL using an IM signal based on the prediction error (PE),
⌧ was set to 0.01 (the different temperatures comes from
heuristics used in previous works [74], [72] to determine the
best values for PE and PEI conditions). At time t the value of
the selected unit Qt

k, representing the motivation to select the
corresponding goal, is updated through an exponential moving
average (EMA) of the intrinsic reinforcement (ir) generated
for obtaining the goal associated to that specific unit:

Qt
k = Qt�1

k + ↵
�
ir �Qt�1

k

�
(4)

where ↵ is a smoothing factor set to 0.35.
The activation of the selected unit in the expert-selector is

updated through an EMA (eq. 4), with smoothing factor set to
0.35, based on the reward obtained to achieve the selected goal
(1 for success, 0 otherwise). A softmax selection rule (eq. 3) is
then used to determine the winning unit of the expert-selector
(temperature is set to 0.05).

The input to the selected expert are the angles of the
actuated joints of the related arm (↵, �, �, �). This input is
encoded with Gaussian radial basis functions (RBF) [63] with
centres on the equally distributed vertexes of a 4 dimensional
grid having 5 elements per dimension (the 5 units cover the
range of one arm joint):

yi = e
�
P

d

⇣
(cd�cid)

2

2�2
d

⌘

(5)

where yi is the activation of feature unit i, cd is the input value
of dimension d, cid is the preferred value of unit i with respect
to dimension d and �2

d is the width of the Gaussian along
dimension d (widths are parametrized so that when an input
is equidistant, along a dimension, to two contiguous units, the
activation of the latter ones is 0.5).

Each expert is a neural-network implementation of the actor-
critic model [15] adapted to work with continuous states and
action spaces [25], [76]. The value produced by the critic of
each expert (V ) is calculated as a linear combination of the
weighted sum of the input units:

V =
NX

i

yiui + bV (6)

where ui is the weight projecting from input unit i and bV is
the bias. The activation of the 4 output units of the actor is
determined by a logistic transfer function:

oj = �

 
bj +

NX

i

ujiyi

!
�(x) =

1

1 + e�x
(7)
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where bj is the bias of output unit j, N is the number of input
units, yi is the activation of input unit i and uji is the weight
of the connection linking unit i to unit j.

Each motor command signal onj is determined by adding
noise to the activation of the relative output oj . Since the
controller of the robot modifies the desired velocity of the
joints progressively, white noise would determine extremely
little movements and the arm of the robot would get stuck in a
small region of the joints space. For this reason, as in [25], the
noise (n) that is added to the output of the actor of the active
expert is generated with a normal Gaussian distribution with
average 0 and standard deviation (s) 2.0 and passed through
an EMA with a smoothing factor set to 0.08. To help the
system to manage the exploration/exploitation problem [84],
in particular to reduce the time spent by the experts to reach
the goals when their competence improves, we implemented
an algorithm that allows the system to self-modulate the
noise n. In particular, the s of each expert decreases with a
“noise-decrease parameters” (d) determined by an EMA (with
smoothing factor set to 0.0005) of the success of the expert in
achieving the goal for which it has been selected (1 for success,
0 otherwise). The s of the selected expert e (and only this) at
trial T (SeT ) is updated as follow:

SeT = s(1� d) (8)

The actual motor commands are then generated as follows:

onj = oj + n (9)

where the resulting commands are limited in [0; 1] and then
remapped to the velocity range of the respective joints of the
robot determining the applied velocity (↵̇, �̇, �̇, �̇).

The expert selected to control the robot in the current trial
is trained through a TD reinforcement learning algorithm [84].
The TD-error (�) is computed as:

� = (rt + �kVt)� Vt�1 (10)

where rt is the reinforcement at time step t, Vt is the evaluation
of the critic at time step t, and � is a discount factor set to 0.99.
The reinforcement is 1 when the robot achieves the selected
goal, 0 otherwise. The weight ui of the critic input unit i of
the selected expert is updated as usual:

�ui = ⌘c�yi (11)

where ⌘c is the learning rate, set to 0.02. The weights of the
actor of the selected expert are updated as follows:

�ua
ji = ⌘a�(o

n
j � oj)(oj(1� oj))yi (12)

where ⌘a is the learning rate, set to 0.4, onj �oj is the difference
between the control signal executed by the system (determined
by adding noise) and the one produced by the controller, and
oj(1� oj) is the derivative of the logistic function.

The IM signal provided to the goal-selector is determined
by the prediction error improvement (PEI) of a predictor that
receives as input the output of the goal-selector (encoded
in a 10-elements binary vector, where 10 is the number of
the different units) and that produces as output a prediction
(ranging in [0, 1]) of the probability of achieving the goal

associated to the current input. The training of the predictor is
based on a standard delta rule where the teaching input (g) is
the binary encoding of the achievement of the selected goal:

�pi = ⌘p(g � pi) (13)

where pi is the prediction given the input and ⌘p is the learning
rate of the predictor set to 0.05.

The PEI is calculated as the difference between two av-
erages of absolute prediction errors (PEs). Each average is
calculated over a period T of 40 selections (related to the same
goal), so the two averages cover a period of 80 selections going
backward from the current selection into the past. In detail, at
time t, the PEI is calculated as follow:

PEIt =

Pt�T
i=t�(2T�1) |PEi|

T
�
Pt

i=t�(T�1) |PEi|
T

(14)

The PE at time i (PEi) is calculated as the difference between
the prediction generated at the beginning of the trial and the
actual outcome of the robot attempt to accomplish the goal (1
if the robot has achieved the goal, 0 otherwise).
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