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A Reinforcement Learning Architecture that
Transfers Knowledge between Skills when Solving

Multiple Tasks
Paolo Tommasino, Daniele Caligiore, Marco Mirolli, and Gianluca Baldassarre

Abstract—When humans learn several skills to solve multiple
tasks, they exhibit an extraordinary capacity to transfer knowl-
edge between them. We present here the last enhanced version
of a bio-inspired reinforcement-learning modular architecture
able to perform skill-to-skill knowledge transfer and called
‘TERL Transfer Expert Reinforcement Learning model’. TERL
architecture is based on a reinforcement-learning actor-critic
model where both the actor and the critic have a hierarchical
structure, inspired by the mixture-of-experts model, formed by
a gating network that selects experts specialising in learning the
policies or value functions of different tasks. A key feature of
TERL is the capacity of its gating networks to accumulate, in
parallel, evidence on the capacity of experts to solve the new tasks
so as to increase the responsibility for action of the best ones.
A second key feature is the use of two different responsibility
signals for the experts’ functioning and learning: this allows the
training of multiple experts for each task so that some of them
can be later recruited to solve new tasks and avoid catastrophic
interference. The utility of TERL mechanisms is shown with tests
involving two simulated dynamic robot arms engaged in solving
reaching tasks, in particular a planar 2-degrees-of-freedom arm,
and a 3D 4-degrees-of-freedom arm.

Index Terms—Cumulative learning, transfer reinforcement
learning, catastrophic interference, bio-inspired modular neural
architectures, mixture-of-expert networks, functioning and learn-
ing responsibility signals, autonomous robotics, reaching tasks

I. INTRODUCTION

Humans, in particular children, learn multiple skills in a
cumulative fashion, from simple to progressively more com-
plex ones [1]. A striking feature of this cumulative learning
process is its increasing speed. Thus, for example, children
initially learn basic reaching and grasping skills in months
[2], [3], but then later rapidly develop a repertoire of variants
of the basic patterns in increasingly shorter times [4], [5].

This work is in part motivated by the aim to understand the
mechanisms through which children learn skills in an increas-
ingly fast fashion. In this respect, our leading hypothesis is
that the increasing learning speed observed in children relies
on the transfer of knowledge from already learned skills to
new skills to be acquired. The increasing learning rates might
thus result from the fact that, thanks to knowledge transfer,
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learning processes can focus on acquiring only the aspects
of the new skills that are novel with respect to the already
acquired ones.

In particular, this work describe a bio-inspired modelling
architecture, developed within a reinforcement learning (RL)
framework, that can be used to study skill-to-skill knowledge
transfer. The system is called Transfer Expert Reinforcement
Learning model (TERL). TERL has two capabilities that we
deem essential for obtaining an increasingly fast learning of
multiple skills (note that here we will use the term ‘skill’ as
a synonym of the RL ‘policy): (a) The capacity to transfer
knowledge from already acquired skills to new skills to be
learned [6]; (b) The capacity to store knowledge of the newly
acquired skills so that it does not damage the knowledge
on the already acquired ones; in other words, it can avoid
‘catastrophic interference’ (or ‘catastrophic forgetting’ [7],
[8]). The architecture, as further specified in Section II-A,
is ‘bio-inspired’ in that it is based on principles suggested
by behavioural and brain mechanisms operating in organisms,
and at the same time meets some constraints also faced by
organisms when acquiring multiple skills.

The challenge faced here contributes to the developmental
robotics overall objective of endowing robots with ‘develop-
mental programs’ supporting a prolonged autonomous devel-
opment [9], [10], [11], [12], [13], [14]. In particular, within
this overall objective we face here the sub-problem of how
robots could acquire multiple skills in increasingly efficient
ways.

The model we illustrate and analyse here is related to the
machine learning literature on transfer reinforcement learning
(TRL) investigating how transferring knowledge between dif-
ferent domains and tasks (see [6] and [15] for two reviews).
The architecture described here focuses on a specific important
problem of TRL concerning the development of algorithms ca-
pable of automatically selecting already solved ‘source tasks’
and the skills acquired to solve them, and to use such skills as
starting points to best solve new ‘target tasks’. We will refer
to this problem as the ‘source-task selection problem’. Here
we sought solutions to the source-task selection problem for
an important class of tasks: the tasks share the same primitive
actions and the same environment transition function, but they
involve different reward functions depending on the tasks [6],
[15]. This class of tasks is biologically relevant as it reflects
a common situation faced by real animals where they have
to satisfy different needs (e.g., hunger, thirst, etc.) and needs
generate different tasks in the same environment and these are
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solved using the same set of ‘primitive actions’ (i.e., muscle
activations). Needs generate tasks as they represent reward
functions that produce a reward signal when a need is present
and is satisfied with the attainment of a suitable resource [16].

TERL architecture has been developed to its current form
through a series of predecessor models. The idea of using
the mixture-of-expert model to implement an actor-critic RL
model was first proposed in [17] who used it to compose skills
and to implement skill-based transfer between complex tasks
(see Section IV). The idea of using the mixture-of-experts
model principles and actor-critic models was also used in [18],
[19] to implement automatic task decomposition and multi-
task learning and was tested with a simple navigation task
involving a 2D scenario and discrete actions. The architecture
was successively developed to work with continuous actions
to control a 2D dynamic simulated arm engaged in solving
multiple reaching tasks [20] but its capacity to implement skill-
to-skill transfer was not investigated. The latter system was
further investigated by [21] and further developed by decou-
pling the responsibility signals of experts used for functioning
and for learning: this decoupling greatly enhances the capacity
of the system to face the skill-to-skill transfer RL problem
(see Section IV). Such work was the first to use the ‘TERL’
acronym to indicate the system. Two previous works [21],
[22] used TERL to show that the principles of the mixture-
of-experts system applied to RL can be used to model and
investigate the processes of assimilation and accommodation
studied in developmental psychology [1].

The system described in the current article represents the
culmination of these previous efforts into a new architecture
that resembles the previous systems in many ways but also
presents some innovations, is described in a novel and com-
prehensive way, and is tested in depth in relation to the skill-
to-skill transfer problem. More in detail, the work illustrated
here presents the following advancements with respect to the
previous works: (a) a systematic justification of the model
ingredients from a computational perspective, and their link
to relevant features of brain (Section II-A); (b) a fully revised
formal description of the model (Section II-B); (c) a refinement
of the new mechanism for decoupling the experts’ respon-
sibility signals used for functioning and for learning, and
other improvements (e.g., noise generation and a best-expert
freezing mechanism; Section II-B): these mechanisms allow
the system to train multiple experts (that we call ‘backgroud
copies’) for each task, so some of them can be later recruited to
solve new tasks while avoiding catastrophic interference; (d) a
systematic study and quantification of the skill-to-skill transfer
capabilities of TERL involving sequential trials (Section III-B)
or interleaved trials (Section III-D) related to different tasks;
(e) tests on the scalability of the system to a large number
of sequential tasks (Section III-C); (f) tests with the 4DoF
redundant robotic arm in addition to the planar arm (Sec-
tion III-E); (g) a throughout discussion of other systems related
to skill-to-skill transfer, from the option-framework systems to
systems directly storing experience or systems belonging to the
MOSAIC-model family, and a clarification of their differences
with respect to TERL (Section IV). The article is closed
with the summary of the main results presented here and the

possible future developments of the system (Section V).

II. TERL: RATIONALE, ARCHITECTURE, FUNCTIONING,
AND LEARNING

A. Principles used to build TERL

The principles followed to build TERL are inspired by
the way in which animals’ brain and behaviour might solve
the source-task selection problem. At the same time, these
principles allow TERL to face such a problem by fulfilling
some constraints undergone by animals. This is intended to
facilitate the future use of TERL as a model of multiple-skill
learning in animals.

1) Continuous states and actions, and function approxima-
tion: TERL is a RL system using function approximators.
Function approximation is needed for RL to work in realistic
setups, e.g. with embodied models and robots involving con-
tinuous state and action spaces [23], [24], [25]. The system
described here is suitable to tackle such continuous state
and action spaces (but not discrete actions as it is based on
mechanisms mixing different actions). In particular, TERL
uses linear function approximators (here also called experts)
to encode policies and value function estimations. Linear
function approximators have the computational advantages
of simplicity of implementation, learning speed, convergence
properties, and stability [24], [26]. However, they cannot
solve linearly-separable problems: this limitation is commonly
solved, as here, by re-coding the input space with kernel
functions [24], [27] and by leveraging modularity.

From a biological perspective, building systems capable of
working with continuous state and action spaces captures the
constraint faced by organisms that interact with the world
through sensors and actuators involving continuous output
and input signals. The use of linear function approximators
increase the biological plausibility of models as they can use
learning rules based on locally-available information [28].

2) Actor-critic architecture: TERL overall architecture is
based on the actor-critic RL model [29], [24]. Actor-critic
models use separate data structures for storing the action
policy and the value function learned on the basis of the
Temporal Difference (TD) algorithm [24]. The use of different
data structures to represent policies and value functions was
done as the latter ones often require different segmentations
of the problem space. Moreover, since the system ‘compiles’ t
the gathered knowledge related to policies and evaluations into
neural network-data structures (respectively mapping states
into actions or into state-values), it is less memory demanding
and more computationally efficient than other transfer models
directly storing experience in the form of ‘state, action, state,
reward’ tuples (we will further explain this in Section IV
that reviews some examples of the latter models). Actor-critic
models, which explicitly represent policies, are also suitable
to face continuous action problems where drawing the policy
from value functions is costly or complex [26].

From a biological perspective, the actor-critic architecture
is considered one of the best models of the brain mechanisms
underlying trial-and-error in organisms, in particular of basal
ganglia [30], [31], [32], [33]. Moreover, the TD learning rule
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at the core of the architecture learning processes accurately re-
produces the dynamics of phasic dopamine, a neuromodulator
playing a major role in trial-and-error learning of organisms
[34], [35].

3) Mixture-of-experts to solve the source-task selection
problem: The actor and the critic components of TERL are
each based on the mixture-of-experts neural-network model
[36], [37]. This model, proposed to solve supervised learning
problems, was modified to work within a RL framework in the
models preceding TERL (starting from [17] and [18]). The use
of the modified principles of the mixture-of-expert architecture
is at the basis of the capacity of TERL to solve the source-
tasks selection problem. For this purpose, the actor and the
critic are each formed by a hierarchy having two levels: low-
level ‘experts’, learning the policies or value functions needed
to solve the novel tasks, and a high-level ‘gating network’,
learning to select the experts (the term ‘hierarchy’ is used here
to refer to the feature of the architecture for which a high-
level module controls the selection of lower-level modules).
The two gating networks of the actor and the critic select
experts encoding already acquired skills to solve a new task
on the basis of the accumulation of evidence related to their
actual capacity to solve such new tasks. This accumulation
of evidence is done in parallel for all available experts, so
it scales up well with the number of experts. We shall see
that this process results in an effective mechanism capable of
quickly identifying the best expert for a given task, so after
an initial phase of exploration the system will assign all the
responsibility for action to that expert.

4) No prior information about the similarity between source
and target tasks: The scenario that was used here to test
TERL capacity to solve the source-task selection problem
has an important feature: the system is not given any prior
information about the similarity between the source and the
target tasks, so the only information it can use to solve the
source-task selection problem is to sample the performance of
the already acquired skills in the new target task. In particular,
the model is tested here with robot arms that have to learn
to solve different reaching tasks where the target object is
located in different positions; these positions have different
degrees of similarity between them, so they offer different
opportunities for knowledge transfer: the robot is, however,
informed only on the task identity (i.e., at different trials it
is told ‘this is task 1’ or ‘this is task 2’, etc.), but not on
the position of the target object, so the only way it has to
select for re-use the already acquired skills is to try them out
in the new target task. We adopted this demanding condition
to be sure to find algorithms that are able to best use the
knowledge on the performance of the already-acquired skills
in the new task. Indeeed, in some domains this is the only
available information. As we further discuss in Section IV, the
mechanisms examined here to exploit this type of information
can be integrated with other mechanisms capable of exploiting
information about the similarity between tasks that is available
in some domains.

Biologically, the condition where the agent has no prior
knowledge on the similarity between the source and target
tasks captures the situations in which animals have information

about their internal needs but have no clue on the external
world conditions where they have to satisfy them [38], [39]. In
these cases, the animals know that they have to solve different
tasks (as they have to satisfy different needs, e.g. extinguish
hunger or thirst), but they do not know if the behaviours to
learn to solve them have to be similar or different (for example,
if they have to perform similar behaviours to ‘collect’ fruits
with high content of nutrient or water; or if they have to
perform very different behaviours to collect nutrient fruits or
water from a lake). Instead, the condition in which the agent
has information about the similarity between source and target
tasks reflects situations where the tasks are defined in terms
of ‘goals’ (i.e., desired states of the external world) rather
than ‘needs’: in this case, the similarities between the goals
of tasks can be heuristically used to infer that the behaviours
to learn to solve them might be similar or different [40]. Note
that the restrictive condition faced here, where the system
has no information about the similarity between tasks, is also
relevant for robots as it reflects situations where the robot
tasks are defined in terms of very abstract goals or in terms of
internal variables of the robot (e.g., ‘satisfy the user’s request
to drink’ or ‘increase your energy level’), rather than specific
goals (e.g., ‘reach the glass located in position x1, y1 on the
table’ or ‘reach the glass located in position x2, y2 on the
table’): indeed, abstract goals and internal variables give little
or no information about the similarity between the behaviours
needed to solve the tasks, a situation captured by the restrictive
condition used used here.

5) Redundant experts to face catastrophic interference:
The system is based on multiple possibly redundant, low-level
experts, which are individually very simple but collectively
capable of solving multiple, complex tasks. Computationally,
this solution has several advantages such as fault tolerance
and the possibility of using simple linear experts [41], [42],
[43]. A further important advantage of this solution, exploited
here, is the possibility to reduce catastrophic interference. Here
the problem of catastrophic interference is generated by the
requirement that the system has to use the same experts during
its whole learning life, so knowledge of new tasks can disrupt
knowledge of already solved tasks. This requirement captures
an important constraint undergone by brain, namely the fact
that it cannot generate ‘new experts’ (new neural resources) to
face new tasks (note that for simplicity here we do not consider
the developmental processes involving the physical structuring
of the brain in time guided by epigenetic programs).

TERL faces the catastrophic interference problem on the
basis of a novel mechanism: the decoupling of the responsi-
bility signals used to select the experts for functioning and
the responsibility signals used to modulate their learning.
This innovation, introduced by TERL models and departing
from other models based on the mixture-of-experts principles,
allows the regulation of the learning rate of experts as desired,
in particular independently of the size of their responsibility
for acting, or evaluating states, in the task (the decoupling is
explained in detail in Section II-B). This decoupling allows the
formation of copies of the best policy expert and value expert
trained when solving a given task. These ‘copy experts’ can
then be used to solve new tasks without disrupting the capacity
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of previously-trained experts to solve previous tasks.
In this respect, we mentioned above that the system is

informed on the ‘identity’ of the task being faced, so the
reader might wonder what are the advantages of duplication
with respect to a straightforward solution creating one new
expert for each new task. These advantages are several (see
also [42]). First, the system could be used to model the
brain as this has most neural resources since birth and so
it must be endowed with mechanisms to use them when
learning an increasing number of tasks. Second, having all
modules since the beginning allows the system to use experts
already trained with similar tasks to solve new tasks rather
than starting from scratch: this is at the basis of the transfer
learning capabilities of the system. Third, the presence of copy
experts gives robustness to the system, e.g. in case of failure of
some experts. Fourth, although not done here, using the same
set of experts from the beginning might allow the system to
progressively organise them in space (e.g. within a 2D grid) on
the basis of their specialisation and temporal activation [43].

We also anticipate that since the task tackled by the system
changes repeatedly the model has to suitably regulate the
exploratory noise. Indeed, noise should progressively decrease
with the learning of a task and increase again in correspon-
dence to new tasks. Since this problem was not central for
this work, we solved it with a simple approach that uses high
levels of noise only in correspondence to tasks that the system
finds difficult to solve and where a high degree of exploration
is needed, and a low level of noise for tasks that are readily
solved by the system.

From a biological perspective, although we do not have
direct empirical evidence for neural duplication (i.e. the fact
that a piece of knowledge encoded in a neural structure is
reproduced in another neural structure; see [44]) we do have
evidence for the partially modular organisation of the brain
[41], in particular: (a) motor cortex is based on neural columns,
where different assemblies of columns might participate to
encode multiple repertoires of skills, from very similar to
very different [45], [46]; (b) basal ganglia are organised in
channels supporting the trial-and-error learning and selection
of different actions and mental contents [47], [48].

B. TERL architecture and functioning

1) Architecture components: The architecture of TERL,
shown in Figure 1, is based on two main components: the
actor, responsible for learning the action policy, and the critic,
responsible for learning to approximate the value function.
Each of the two components is formed by a number of expert
networks, learning the policy or the value function, and a
gating network, learning to select the experts given the task
(note that here for simplicity the number of experts of the
actor and of the critic is the same but it could be different).
The functioning and learning processes of the architecture are
now explained in detail (the Appendix gives its parameters).

2) Inputs and outputs of the architecture components:
The experts receive as input the current environment state
encoded in an expanded space of features (here Gaussian
basis functions with centres equally distributed over the input

space, see below for details) and have no information about
the goal or task. In particular, each environmental state is
encoded with an I-dimensional vector of continuous variables
s =< s1, s2, ..., si, ..., sI >. In the experiments reported here,
s encoded the arm joint angles, so I = 2 in the 2D planar
arm simulations, and I = 4 in the simulations involving
the 3D humanoid robot arm. The state vector is expanded
into a D-dimensional vector of continuous variables (features)
f =< f1, f2, ..., fd, ..., fD > where D >> I . Features are
computed through normalised Gaussian basis functions:

fd =
e
−||s−sd||

σ2
f

∑D
d=1 e

−||s−sd||
σ2
f

(1)

where sd is the preferred state vector of feature d and σ2
f is

the width of the Gaussians (in degrees). The preferred vectors
of the features lay on the vertices of a regular grid overlapped
with the state space. Notice that the experts are not informed
on the task to solve but only on the posture of the arm, so
different tasks require different experts. This limited input
eased the analysis of the transfer capabilities of the system,
and reflects the organisation of the brain where primary motor
cortex is mainly informed as to the limb posture but not as to
the overall tasks the system is accomplishing [49], [50], [51].
This issue is further discussed in Section V.

The output of the actor experts is a J-dimensional vector
a =< a1, a2, ..., aj , ..., aJ > encoding the controlled contin-
uous variables. Here, the vector encoded the angles of the
arm joints, so J = 2 in the 2-D planar arm simulations, and
J = 4 in those involving the 3D humanoid robot arm. As
further explained below, these desired angles, varying at each
time step, are used as the equilibrium points of proportional
derivative controllers (PD) that produce the torques controlling
the dynamic-arm joints.

The gating networks are informed only as to the identity
of the task to pursue. The tasks used here are of the type
‘reach and touch object A in space’ through a dynamic arm.
This tells the gating networks which task is being solved
(e.g., ‘Task A’, ‘Task B’, etc.) but it does not furnish any
information about the similarity between tasks. Formally, the
current task identity is encoded as a K-dimensional vector
z =< z1, z2, ..., zk, ..., zK >. The z vectors, as many as the
tasks, are orthogonal and are formed by binary elements all
activated with 0 with the exception of one element, activated
with 1, corresponding to the current task. Notice that the gating
networks are only informed on the task but not on the posture
of the arm. Again, this limited input eased the analysis of the
transfer capabilities of the system and reflects the organisation
of the brain where higher cortical areas are mainly informed
on abstract goals and overall motivations [52], [53], [54].

The output of the gating networks are two E-dimensional
vectors, where E represents the number of experts: gCG =<
gCG1 , gCG2 , ..., gCGe , ..., gCGE > for the critic gating network
and gAG =< gAG1 , gAG2 , ..., gAGe , ..., gAGE > for the actor
gating network. These vectors encode the responsibility signals
of the respective experts.
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Fig. 1. The architecture of TERL, formed by a modular critic and a modular actor. The figure gives an overview of the elements composing the system that
are explained in detail in the main text. The critic is formed by a gating network (CG) and a number of experts (Ce). Also the actor is formed by a gating
network (AG) and a number of experts (Ae). Thin arrows: one-to-one or many-to-one hardwired connections set to one (for information relay); dotted bold
arrow: all-to-all hardwired connections (for computing features); thin dashed arrows: learning signals that cause the update of all crossed connections (notice
how the TD-errors of the critic experts are locally used to train themselves, whereas the critic selector does not need any TD-error to learn as it learns based
on the mixture-of-experts supervised learning rule; the general TD-error is used to train the actor experts and the actor selector); bold arrows: trained all-to-all
connections; flat-head arrows: one-to-one hardwired multiplicative gating connections set to one (for carrying the responsibility signals). Letters indicate the
symbols used in the mathematical description of the system in the text. Bold letters represent vectors (for simplicity, the vectors of biases are omitted).

Finally, the system receives a reward r = 1 when the task
is accomplished with success (here when the arm succeeds
to touch the target object). Otherwise, the system receives a
reward r = 0 at any other time step.

3) Actor gating network: functioning: The actor gating
network, denoted with AG, receives as input the task identity z
and returns as output the responsibility signals of the experts.
These are encoded in the vector gAG with elements gAGe
corresponding to experts e = 1, 2, ..., E. The responsibility
signal of an expert represents the ‘prior probability’ that such
expert is the best one to solve the current task among the
actor experts. The priors are used: (a) to set the contribution of
each expert to produce actions; (b) to establish, after a suitable
transformation (see below), the size of its learning update.

The activation potential of the output units of AG, denoted
with the vector pAG with elements pAGe , is computed as:

pAG = WAG · z (2)

where WAG is the matrix of the connection weights of the
network. The gating networks of the model do not have a bias
as they should not have a tendency to select specific default
experts.

As in the mixture-of-experts model, the prior responsibil-
ities, encoded in the vector gAG with elements gAGe , are

computed with the soft-max function:

gAGe =
ep
AG
e /κ∑E

e=1 e
pAGe /κ

(3)

where κ is the temperature regulating the slope of the soft-
max. The soft-max guarantees that

∑E
e=1 g

AG
e = 1 so the

responsibility signals can be interpreted as probabilities.
4) Actor experts: functioning: The actor experts, denoted

with Ae, are a set of E neural networks each of which gets as
input the state features f and encodes a possible action with
logistic output units. The activation potential of the output
units of expert Ae, denoted with the vector pAe with elements
pAej (e.g., corresponding to the robot joint angles), is computed
as:

pAe = WA
e · f + bAe (4)

where WA
e is the connection weight matrix of the expert Ae

and bAe the vector of biases. The activation of the output units
of expert Ae, denoted with the vector aAe with elements aAej ,
are computed with a logistic function:

aAe =
1

1 + e−pAe
(5)

As we shall see below, aAe is mixed with noise and so should
be interpreted as the mean of a probability distribution of the
system action.
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5) Global actor action: The global action aA of the actor
(before the addition of noise) is formed by mixing the actions
aAe of experts based on their priors:

aA =

E∑
e=1

[
gAGe · aAe

]
(6)

To foster exploration, the action of the system to be exe-
cuted, denoted with a, is obtained by mixing the global actor
action aA with a noisy action, denoted with aN , produced by
the Noise Generator component explained below. Thus, at a
specific time t:

at = ut · aAt + (1− ut) · aNt (7)

where ut is a variable regulating the exploitation-exploration
level in different moments of the trial and explained below in
the paragraph on the Noise Generator. This equation implies
that with high values of ut the performed action is strongly
based on the actor action, whereas with low values it is
strongly based on noise.

6) Critic gating network: functioning: The critic gating
network, denoted with CG receives as input the task identity z
and returns as output the responsibility signals of the experts
of the critic. These responsibility signals are encoded in the
vector gCG with elements gCGe corresponding to the experts
e. Similar to what happens for the actor, these responsibility
signals represent the prior probability that each expert is the
best one in estimating the value function, given the current task
and the current policy, and are used for the critic functioning
and, after a suitable transformation illustrated below, for its
learning.

The activation potential of the output units of CG, encoded
in the vector pCG with elements pCGe , is computed as:

pCG = WCG · z (8)

where WCG is the matrix of connection weights of the
network.

As with the actor, the prior responsibilities, encoded in the
vector gCG with elements gCGe , are computed with the soft-
max function:

gCGe =
ep
CG
e /κ∑E

e=1 e
pCGe /κ

(9)

7) Critic experts: functioning: The critic experts, denoted
with Ce, are a set of E neural networks each of which gets
as input the state features f and returns the state value with
a linear output unit. The activation vCe of the output unit of
expert Ce is computed as:

vCe = wCe · f + bCe (10)

where wCe is a row vector encoding the connection weights of
the expert and bCe its bias. Note how the actor experts use a
logistic function to produce the output so this can be mapped to
a limited range of the robot’s joint angles (see Sections III-B,
III-E). The critic experts instead use a linear output unit so
they can produce state values outside the (0, 1) range.

8) Critic: global value: The global value of the critic,
denoted with v, is computed by mixing the values vCe of the
experts based on their priors:

v =

E∑
e=1

[
gCe · vCe

]
(11)

C. TERL learning

1) Critic: global TD-error: The global value vt at time t
is used to compute the global TD-error δt of the critic:

δt =


0 if t = 0

(rt + γ · vt)− vt−1 if 0 < t < T

rt − vt−1 if t = T

(12)

where rt is the reward at time t, and γ is a discount factor. In
this formula, vt is set to zero at the end of the trial (t = T )
to take into account the episodic nature of the RL problems
considered here. As we shall see below, δt, related to the
performed actions, is used to train the actor experts and the
actor gating network.

2) Critic experts: TD-error: The TD-error of each critic
expert, denoted with δCet , is computed as follows on the basis
of the expert value vCet at time t:

δCet =


0 if t = 0(
rt + γ · vCet

)
− vCet−1

if 0 < t < T

rt − vCet−1
if t = T

(13)

This value represents the expert error in estimating the current
state value and so it is computed on the basis of the expert
current and past values and the experienced reward. For this
reason, as we shall see below, it is used both to train the critic
experts and to update the prior probability estimate gCGe that
each critic expert is the best to evaluate the actor policy used
to solve the current task.

3) Actor gating network: learning: We now show how
the estimate of the goodness of experts in solving the new
task is updated on the basis of a process of accumulation of
information and the TD-error. At each time step, the each
expert’s responsibility signal is updated on the basis of the new
evidence (likelihood) that the expert contributed to determine
the executed action a in the current task (recall that such action
is noisy due to the aN component). Formally, the likelihood
lAGet is computed on the basis of a Gaussian function: this
makes the likelihood of each expert inversely related to the
distance between that expert action aAe and the executed noisy
action a:

lAGet = e
− 1

2·σ2
AG

∣∣∣∣a
t−1
−aAet−1

∣∣∣∣2
(14)

where σ2
AG is the Gaussian width parameter. Thus, the more

similar the expert action to the executed action, the higher the
likelihood that it had a large responsibility in generating it.

The likelihood is then used to compute the posterior prob-
abilities with the Bayes rule:

hAGet =
lAGet · g

AG
et−1∑E

e=1[l
AG
et · gAGet−1

]
(15)
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Notice that this formula implies that
∑E
e=1

[
hAGe

]
= 1 and that

hAGet > gAGet−1
for experts whose action aAe was more similar to

the executed action a relative to the action of all other experts.
The update of the connection weights of the actor gating

network AG, and hence the responsibility signals of the actor
experts, is based on the difference between the posteriors and
the priors but also on the overall TD-error δ:

wAGekt = wAGekt−1
+ ηAG · δt ·

(
hAGet−1

− gAGet−1

)
· zkt−1

(16)

where ηAG is a learning rate. The formula, which is based on
the mixture-of-expert formula changed to take into considera-
tion the RL framework used here (in particular the TD-error),
changes the connection weights so that the prior responsibility
signal of experts, gAGet−1

, gets closer to or away from the
posterior responsibility signal, hAGet−1

, depending on the sign
and size of the TD-error, δt. In particular, the formula implies
that the responsibility signals of experts whose actions are
similar to the executed action (hence have a high hAGet−1

) are
increased, but only if the executed action produced a positive
TD-error, i.e. if the executed action had positive effects.
The responsibility signals of experts that produced an action
dissimilar from the executed one are instead decreased. On the
contrary, in the case of a negative TD-error the responsibility
signals are updated in the opposite direction, yielding a lower
responsibility for experts whose action was more similar to
the executed one as the latter had negative effects. The respon-
sibility signals of experts that produced an action dissimilar
from the executed one are instead increased. Overall, the
rule ensures that the responsibility signals are progressively
increased for the experts that contribute to achieve the highest
reward in the current task as the effect of an accumulation of
evidence on the fact that they are better than the other experts
in solving such task.

4) Actor experts: learning: The mixture-of-experts model
uses the posterior probabilities to scale the learning rate of
each expert so that the best experts are not only assigned the
highest responsibility during functioning, but also an update
proportional to such posteriors. One of the most important
departures of the current system from this strategy is based
on the decoupling of the responsibility signals used for func-
tioning and those used for learning. Indeed, a number of pilot
experiments using several variants of the mixture-of-experts
strategy showed that the classical strategy leads not only to a
desirable rapid increase of the responsibility of the best expert
towards the maximum possible value of one, but also to a rapid
decrease to zero of the learning rate of all other experts. In
our case, the latter outcome is detrimental because when the
system has to learn a new task similar to a previously acquired
one, it recruits the expert trained to solve the latter, modifies it,
and so loses the capacity to solve it (catastrophic forgetting).
Instead, the use of fixed responsibilities for learning allows the
training of multiple experts similar to the best one: the size
of those responsibilities allows the regulation of the number
and learning rate of the copy experts. These copy experts can
be later recruited to solve similar tasks without destroying the
capacity to solve the previously solved source tasks.

To implement this idea, we ranked the experts on the
basis of the decreasing value of their priors gAGe and then
assigned them fixed learning rates based on the ranks. In
particular, here we used the experts’ ranks, encoded with
grAGe ∈ {0, 1, 2, ..., E − 1}, to compute their learning respon-
sibility signals glAGe as follows:

glAGe =
ζ−g

rAG
e∑E

e=1

[
ζ−g

rAG
e

] (17)

where ζ was a coefficient. For example, setting ζ = 6, as
done here, implies that the learning responsibility signals glAGe

are, when ordered by rank, equal to the following values:
(0.834, 0.139, 0.023, 0.004, 0, 0, 0, 0, ...)

Note that: (a) the algorithm will train one main expert
and a given number of copies (here three) of it, whereas
other experts will not be trained so avoiding disrupting their
knowledge; (b) the experts that are trained are those that have
the highest priors, i.e. those that are the best in solving the
current task; (c) responsibility signals different from those
used here can be used, including some with

∑E
e=1[g

lAG
e ] 6= 1,

to obtain a desired number of background expert copies and
set their learning rates; for example, one might establish a
fixed learning rate for the first k experts. The higher the
number of background experts copies are formed, the higher
the redundancy of the system and all related advantages and
disadvantages.

The connection weights of experts are then updated on the
basis of glAGe as follows:

mA
ejdt =

(
ajt − aAejt

)
·
(
aAejt ·

(
1− aAejt

))
· fdt (18)

wAejdt = wAejdt−1
+ ηA · δt · glAGet−1

·mA
ejdt−1

where
(
aAejt ·

(
1− aAejt

))
is the derivative of the logistic

transfer function, and ηA is a learning rate. The rule is based
on the standard gradient-descent formula of the mixture-of-
experts model applied to neural logistic output units, but the
size of the update is also weighted by the RL TD-error. The
rule implies that: (a) the size of the update is higher for experts
that produce an action more similar to the action actually
executed (i.e. a higher |ajt − aAejt |); (b) aAe moves towards
a when 0 < δt as the noisy action a has been better than
expected; (c) ae moves away from a when δt < 0 as the noisy
action a has been worse than expected; (d) if δt is close to
zero, for example when the system has converged to good
solutions, the action is not updated because the noisy action
a did not perform better or worse than expected; (e) if some
of the expert copies developed for the task are later recruited
to learn a similar new task, the capacity to solve the current
task tend to not be impaired as the main expert used to solve
it will not be recruited (see also the sub-section ‘Additional
mechanisms to preserve the best experts’ below).

5) Critic gating network: learning: We now show how the
responsibility signals of the experts of the critic are updated
on the basis of mechanisms that accumulates evidence on the
capacity of experts to face the given task similar to what is
done in the mixture-of-experts model for supervised learning
problems. This is possible as the problem of learning the value
function can still be seen as a supervised learning problem
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with the difference being that the value to use as the desired
output is not given and so, as common in RL [24], has to be
formulated on the basis of the reward signal and the estimate
of the next state value.

The new evidence (likelihood) that an expert is the best
one to estimate the value function is computed as a Gaussian
function of that expert TD-error, δCe , as this represents its error
in predicting the incoming rewards:

lCGet = e
−

(
(δCet)

2

2·σ2
CG

)
(19)

where σ2
CG is the Gaussian width.

Similarly to the actor gating network, the likelihood is used
to compute the posterior probabilities with the Bayes rule:

hCGet =
lCGet · g

CG
et−1∑E

e=1

[
lCGet · gCGet−1

] (20)

The formula implies that hCGet is higher than gCGet−1
for experts

that have a low TD-error in comparison to the TD-error of the
other experts. Also here

∑E
e=1

[
hCGe

]
= 1.

The update of the connection weights of the critic gating
network is then computed as in the mixture-of-expert model:

wCGekt = wCGekt−1
+ ηCG ·

(
hCGet − g

CG
et−1

)
· zkt−1

(21)

where ηCG is a learning rate. The formula implies that the
responsibility signals of experts with relatively smaller TD-
errors are increased while those of experts with larger TD-
errors are decreased, leading to larger responsibilities for
experts that produce more accurate estimates of the state values
for the current task. Overall, as for the experts: the rule ensures
that the responsibility signals are progressively increased for
the experts that contribute to achieving the highest reward in
the current task as the effect of an accumulation of evidence
that they are better than the other experts in solving such task.

6) Critic experts: learning: Due to the same reasons ex-
plained for the actor experts, we also implemented a decou-
pling between the functioning and the learning responsibility
signals of the critic experts. The expert ranks grCGe were com-
puted as for the actor and used in the same way (Equation 17)
to compute the learning responsibility signals glCGe used to
modulate the learning rate of the experts.

Each expert was then trained using the TD-learning RL for-
mula and its own TD-error, δCe , to enforce the self-consistency
of the value estimates produced by the expert:

wCedt = wCedt−1
+ ηC · δCet · g

lCG
e · fdt−1 (22)

7) Additional mechanisms to preserve the best experts:
Note that in some conditions that are more challenging for
catastrophic forgetting, additional mechanisms can be used to
further reduce interference between tasks. For example, in the
‘sequential conditions’ tested here (Section III) we found it
very useful to use a mechanism for which when the prior
of an expert overcomes a certain (high) threshold, indicating
that much evidence has been accumulated that such expert is
the best for the current task, its learning rate is reduced to
low values (here to zero for simplicity). Such low learning

rate facilitates the preservation of the best experts found for
previous tasks thus leading the system to update especially
the ‘background copies’ to solve the new tasks. Notice that
alternative mechanisms might be investigated in the future to
preserve the best expert found for a given task.

8) Noise generator and executed noisy action: One of
the major problems of RL is the regulation of exploratory
noise, also known as the exploration-exploitation dilemma.
The heuristic solution most commonly used in the literature
is to progressively lower exploration noise with learning so
as to augment the exploitation versus exploration while the
system becomes progressively more skilled (i.e., progressively
better at achieving reward) [24]. Here we adapted a very
simple mechanism that is based on this idea, but note that
the other mechanisms of TERL could work with any other
method one might use for noise generation. The mechanism
takes into consideration the fact that the new task to solve can
be very similar, or even identical, to already solved tasks: in
these cases, exploratory noise has to be very low since the
initial trials of learning of the new task because the system
already has some experts that can be readily used to solve
it. For this purpose, we started each trial with low noise and
then increased it during the trial. In this way, if the system
is capable of solving the task quickly, it is not disturbed by
noise; instead, if it takes a long time to solve it during the
trial, then noise increases causing high exploration. Overall,
the mechanism implies that with not-yet-learned tasks noise
decreases progressively, on average, over the tasks (as in
standard RL problems). Instead, with already-learned or easy
tasks, for example with tasks very similar to already solved
ones, noise is immediately low or decreases fast, on average
over the trials, with learning.

To implement this idea in detail, we divided each trial into
two phases. In a first ‘exploitation phase’ (t = 0, 1, ...,M )
noise is very low. In a second ‘exploration phase’ (t =
M + 1,M + 2, ..., T ′, where T ′ is the trial timeout; note
that T , the trial duration, is possibly shorter than T ′ in case
of reward accomplishment) noise gets progressively higher.
Notice that M should be set to a value equal or higher than
the time assumed to be sufficient to solve the task (a similar
parameter has to be set when using the progressive decrease
of noise mechanism commonly employed in the RL literature
and that could not be used here). In detail, the mechanism is
implemented by setting the value of ut regulating the mixture
between the noisy action and the actor action (see Equation 7)
as follows:

ut =

{
υ if 0 < t ≤M
ut−1 − βut−1 if M < t ≤ T ′

where υ is the value of u in the exploitation phase and β is a
time constant regulating the dynamics of u in the exploration
phase. A small amount of noise is still present in the initial
exploitation phase to have some refinement of the policy even
during such phase, whereas β is set to a value that implies that
noise rapidly increases during the second exploration phase.

As done in [55], using a noise filter is important to control
dynamic robotic arms because their physical inertia tends to
cancel out white noise and also avoids issuing jerky commands
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to the robot. For this reason, the noisy action aN that is mixed
with the actor action to produce the executed action (Equation
7) is produced by a Noise Generator component, denoted with
N, through a first order filter:

aN
t

= aN
t−1

+ τ
(
−aN

t−1
+ nt

)
(23)

where τ represents the filter time constant ranging in (0, 1)
and nt is a vector having each element randomly drawn on
the basis of a uniform probability distribution in [−ε,+ε] at
each time step.

III. RESULTS

A. Measuring transfer quality

To measure the potential for transfer of TERL, its perfor-
mance was compared with two alternative systems furnishing
the upper and lower bounds of learning speed curves (cf. [6]),
namely: (a) a system that learns to solve the new task based
on a certain source task: this may result in an advantage
or a disadvantage for learning the new task depending on
its similarity to the source task; (b) a system that learns to
solve any new task from scratch, without the possibility of
skill transfer. The two systems are also important as they
view the multiple-task problem as either a set of separated
Markov Decision Processes (MDPs; [24]), each corresponding
to a single task, or as a whole MDP, where the problem is
to maximise the reward given multiple tasks. The possibility
of viewing the problem in these two ways is important for
distinguishing the system discussed here from other related
systems (see Section IV).

The first system, called ‘SIM’ (which stands for ‘simple
system’), is simply formed by one critic expert and one actor
expert and no gating networks (each of the two experts is
a linear function approximator getting as input the Gaussian
features f used to encode the arm posture). SIM is capable of
learning only a policy mapping πk : S × A → [0, 1] to solve
one specific MDP problem k denoted with < S,A, T,Rk >
(where S denotes the set of states, A the set of actions, T
the transition function mapping the current state and action
to a probability distribution over the next states, and Rk the
reward function of task k mapping the current state, action
and resulting state to a reward value). This, and the fact that
SIM did not receive an input on the solved task, implies that
when it learns a new task it fully forgets the previously one.
Most tests illustrated below required the solution of tasks in
sequence: in this condition, SIM allowed the identification of
the advantages and disadvantages of attempting to solve each
new task starting from the previous one. SIM used identical
parameters as the experts of TERL.

The second system, called ‘EXP’ (which stands for ‘system
with an input expanded with information about the identity of
the task’), as SIM is again formed only by one actor expert
and one critic expert and no gating networks. However, in
EXP such experts have enough computational capabilities to
solve all tasks. In particular, in EXP the two experts receive
information not only on the arm posture (features f), but also
on the task identity (z): EXP uses the information about the
task identity as an additional input to the experts together

with the posture features (hence forming an ‘expanded’ input)
rather than as information sent to the gating networks (not
present in EXP) as in TERL. Technically, the task identity
is used as a further dimension of the input problem space
so that the Gaussian basis functions encoding the features
(f) are reproduced for a number of times equal to Z (the
number of tasks) and activated only when the corresponding
feature z is active. For this reason, in the tests EXP allowed
the identification of the advantages/disadvantages of solving
new tasks starting from scratch without any opportunity of
transferring knowledge from previously acquired ones (no gen-
eralisation). At the same time, the system allow the measure of
performance in complete absence of catastrophic interference.
EXP used identical parameters as the experts of TERL.

Differently from SIM, but the same as EXP, TERL is
informed of the task at hand. However, unlike EXP, TERL uses
the information regarding the task identity to take advantage
of the fact that different tasks share the same states, actions,
and transition function to transfer knowledge from acquired
tasks to new tasks to be learned.

The minimal performance that we require from TERL is that
it converges towards the best MDP solution, i.e. performance
optimality [56]. The core of the skill-transfer problem is
however captured by learning optimality [56], namely the fact
that an algorithm achieves a high (in theory the best) learning
speed on new tasks thanks to the previously acquired ones.
The literature on TRL measures this capacity for transfer
through three metrics [6], [15]: (a) the jumpstart: i.e., a
higher initial performance when learning a new task based
on transfer with respect to a non-transfer condition; (b) the
learning speed: i.e., a faster learning with respect to a non-
transfer condition; (c) the asymptotic improvement: i.e., an
improvement in asymptotic performance (i.e., the performance
when the learning process achieves its maximum after a
sufficiently long training). This is relevant only when a difficult
task can be learned only after having previously learned other
tasks, otherwise this criterion is not distinct from performance
optimality.

Here we required not only that TERL approaches per-
formance optimality (solution of the tasks), but also that it
approaches the performance of SIM when transfer is advanta-
geous and the performance of EXP when starting from scratch
is the best thing to do, while at the same time avoiding
catastrophic forgetting. A comparison between the expected
performance of SIM and EXP and the desired performance of
TERL in different conditions is summarised in table I.

B. Tests with the planar arm: sequential learning of tasks

TERL was tested with two setups requiring simulated
robotic dynamical arms to reach targets positions in space.
These setups were chosen because: (a) they involve continuous
state and action spaces and the control of dynamical plants;
(b) they allow a useful visualisation and analysis of the per-
formance of the system, in particular the parallel visualisation
of the postures/movements of different actor experts; (c) they
involve limb movements, a category of biological phenomena
that could be investigated with TERL in future work.
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TABLE I
EXPECTED PERFORMANCE OF SIM AND EXP, AND DESIRED

PERFORMANCE OF TERL, WHEN LEARNING A NEW TASK AFTER HAVING
PREVIOUSLY LEARNED A TASK REQUIRING THE Same SKILL, A Similar
SKILL, OR A Different SKILL. IN PARTICULAR, SIM STARTS FROM THE

PREVIOUS SKILL, SO IT HAS AN ADVANTAGE IF TRANSFER IS POSSIBLE
BUT AT THE SAME TIME ALWAYS LOSES THE CAPACITY TO SOLVE THE

PREVIOUSLY SOLVED TASK (CATASTROPHIC FORGETTING). EXP LEARNS
EACH TASK FROM SCRATCH, SO IT CANNOT HAVE ANY ADVANTAGE OF

TRANSFER NOR ANY DISADVANTAGE IN TERMS OF CATASTROPHIC
INTERFERENCE. TERL WAS DESIGNED TO PRODUCE THE BEST OUTCOME

IN ALL CONDITIONS: THAT IS, TO TAKE ADVANTAGE OF TRANSFER
WHENEVER POSSIBLE, TO AVOID WASTING TIME WHEN TRANSFER IS NOT

POSSIBLE, AND TO ALWAYS AVOID CATASTROPHIC FORGETTING. L:
EXPECTED LEARNING SPEED; C.f.: EXPECTED EFFECTS OF CATASTROPHIC

FORGETTING; N : ‘NEUTRAL’ PERFORMANCE, AS IN LEARNING FROM
SCRATCH (WITHOUT TRANSFER); G: GOOD PERFORMANCE, BENEFITING

OF TRANSFER OR HAVING NO CATASTROPHIC FORGETTING; B: BAD
PERFORMANCE, WORSE THAN STARTING FROM SCRATCH, OR PRESENCE
OF CATASTROPHIC FORGETTING. A BOLD LETTER INDICATES THE BEST

OUTCOME IN THE GIVEN CONDITION.

Prev. SIM EXP TERL
task L. C.f. L. C.f. L. C.f.

Same G G N G G G
Similar G B N G G G
Different B B N G N G

The first set-up involved a 2D 2DoF simple simulated
dynamic arm working on a plane containing four ‘object’
goals each having a radius of 3cm (Figure 2). The planar
arm was very useful for developing the algorithm and also
facilitates the explanation of its functioning (see examples
below). The second setup involves a 3D, redundant, 4DoF
simulated dynamic robotic arm and allows the test of the
capacity of the system to scale up to more complex tasks
(Section III-E).

Figure 2 shows the 2D arm used to test the model. The arm
was formed by two links: an upper arm measuring 25cm and
a forearm measuring 35cm. The movement range of the joints
was set to [-100◦;+30◦] for the shoulder (0◦ corresponding to
the upper limp located forward the robot and the angle was
measured anticlockwise) and to [0◦;+160◦] for the elbow (0◦

corresponding to the straight arm and the angle was measured
anticlockwise).

The dynamics of the arm were simulated based on the
following equations [57]:

qs = (Is + Ie + 2MeLsSe cos θe +MeLs
2)θ̈s

+(Ie +MeLsSe cos θe)θ̈e −MeLsSe(2θ̇s
+θ̇e)θ̇e sin θe +Bsθ̇s

qe = (Ie +MeLsSe cos θe)θ̈s + Ieθ̈e+

MeLsSeθ̇s
2
sin θe +Beθ̇e.

(24)

where qs and qe are the actuated torques of the shoulder
and elbow joints, respectively, and the parameters M , L, S,
I , and B are respectively the mass, the length, the distance
from the centre of mass to joint, the rotational inertia of
links, and the coefficient of viscosity (these parameters were
set to {0.9, 0.25, 0.11, 0.065, 0.08} for the shoulder joint and
to {1.1, 0.35, 0.15, 0.1, 0.08} for the elbow joint as in [57]).
The equations were integrated with a 4th order Runge-Kutta
method using a time step of 0.01sec.

Fig. 2. The dynamic 2D arm and the four target objects A, B, C and D
(A=B indicates that the location of A coincides with the location of B). Dots
represent the borders of the workspace established by the length of the arm
links and the range of its joints. The work space is asymmetric as the ‘elbow’
joint range is asymmetric with respect to the upper arm as in a humanoid
robot arm.

The arm had two actuated DoF: one for the shoulder joint
(θs) and one for the elbow joint (θe). In particular, the robot
controllers used here set the desired posture (or ‘desired
angles’, or ‘action’) of the arm, and ‘skills’ represented map-
pings from sensory input to desired postures. A proportional
derivative controller (PD) was used to generate the torque of
each of the two arm joints [58]:

q = Kp(θdes − θ)−Kdθ̇ (25)

where θ and θdes are respectively the current and desired joint
angles, and Kp and Kd are respectively the proportional and
damping gains (Kp was set to 25 and Kd to 4 for both joints).

The objects shown in Figure 2 allow the specification of
four reaching tasks, each requiring that the system learns to
reach one specific object. We will call these tasks ‘Task A’,
‘Task B’, etc., depending on the target object. The solution of
each task requires the system to acquire a skill that allows the
system to reach one of these objects starting from any initial
posture. All trials involving the solution of the tasks started
with the arm set at a random posture. Each trial terminated
either with the achievement of the goal (target object) or with
a time out of 6 sec (i.e., 600 steps of 0.01 sec each; 0.01 is
also the integration time step used for dynamical equations
of the arm). The models got a reward of 1 when the hand
touched any point of the target object, and 0 otherwise. This
implies that the system can work with tasks defined in terms
of reaching a set of states, rather than a single state, to the
extent that a suitable reward function can be associated with
them.

The tasks were used to build three tests corresponding to
the three conditions of the rows of Table I. In each, the system
had to first learn a task during n trials, and then another task
for further n trials (this is what we call here a ‘sequential
test’). The first test involves first learning Task A and then
Task B each for 200 trials: as these tasks require the same
sensorimotor mapping this allows us to check if TERL is able
to re-use experts used to solve Task A when learning to solve
Task B and how efficient it is in doing so (by comparing
TERL with SIM, which performs an instantaneous transfer,
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this allows us to quantify the ‘overhead’ cost of solving the
task with the hierarchical architecture of TERL rather than
with a simple expert). We set the number of trials for this and
other experiments through pilot experiments that showed the
amount of learning allowing the best tested systems for each
condition to achieve steady-state performance. The second test
involves first learning Task C and then Task D each for 400
trials: as these tasks require similar sensorimotor mappings,
TERL should exhibit a transfer advantage when learning D in
comparison to EXP that learns all tasks from scratch. Finally,
the third test involves learning first Task A and then Task
D each for 700 trials: as these tasks require very different
sensorimotor mappings, TERL should realise that no transfer
has to be attempted, and show a performance similar to EXP,
that learns from scratch, and superior to SIM, that starts to
learn Task D from the different sensorimotor mapping learned
for Task A.

The avoidance of catastrophic forgetting can be ascertained
by comparing the performance in the first task (e.g., C) after
learning it, with the performance in the same task after the
system has learned the second task (e.g., D) and without re-
learning the first one. The system is robust to forgetting if the
performance in solving the first task does not decrease after
learning the second task.

Overall, the tests involve these challenges: (a) The experts
have to learn to associate, at each time step of the trial,
a suitable desired posture (output) to the current posture
of the robot (input): the dynamics of the arm will then
generate the actual trajectory of the arm given the desired
equilibrium points selected by the experts; no cost is given for
performing movements, but due to the discount of the reward
(see Section II-B) the RL algorithm tries to find trajectories
of equilibrium points that minimise the time taken by the
dynamic arm to touch the target object. This aspect is not
further discussed here, but in previous work we have shown
how one expert of the type used here can learn to produce
quite complex equilibrium-point trajectories to minimise such
time and possibly move around obstacles [59], [60]. (b) The
gating networks are only informed about the identity of the
currently solved task (Task A, Task B, etc.) and on this basis
they have to learn to select the best expert(s) to solve it.
(c) The management of the expert copies by the learning
algorithms have to support the exploitation of the opportunities
for transfer between tasks while at the same time avoiding
catastrophic interference.

The initial connection weights of the expert actors were
randomly drawn from a uniform distribution ranging in [-
0.2, 0.2], and the connection weights of the critic experts
were set to zero for SIM, EXP, and TERL The connection
weights of TERL gating networks were set to zero. The actor
and the critic of TERL were each formed by ten experts
each. This number was chosen to give the system enough
resources to form main experts (i.e., experts with the highest
functioning responsibilities) and copies for the three tasks and
to study the selective recruitment of redundant resources by
the system’s gating networks. Other parameter values of TERL
are summarised in the Appendix.

Figure 3 illustrates the learning curves of SIM, EXP and

TERL in the three tests. In particular, for each test the figure
reports the learning curves related to the first and second task
forming each test.

The results of the first test, formed by two tasks involving
the same sensorimotor mapping, show that TERL manages
to quickly discover that in order to solve the new (second)
Task B it can reuse the skill previously acquired by solving
Task A. The overhead cost for this discovery is rather low
(compare TERL performance with SIM performance in Task
B). TERL has also some advantage on the other models in
the Task A solved as first: the reason for this is that TERL
experts are initialised to incorporate different initial behaviours
from which the selection mechanism can draw one that is most
appropriate for the current task (this is further explained on
the basis of some figures in Section III-C).

The results of the second crucial test, formed by two tasks
involving similar sensorimotor mappings, show that TERL is
capable of discovering that in order to solve the second task
(Task D) it can start from the skill previously acquired by
solving Task C and this produces a notable advantage in its
learning speed. The difference in performance between EXP
(starting from scratch) and TERL in Task D shows the transfer
advantage for TERL. The difference in performance between
TERL and SIM (transferring immediately) in Task D shows
the overhead cost that TERL pays to understand the possibility
of exploiting transfer.

Finally, the results of the third test, formed by two tasks
involving very different sensorimotor mappings, show that
TERL manages to avoid using the skill previously learned for
Task A to solve the new task D as the two are quite different.
The difference in performance between SIM and TERL in
Task D shows the cost that TERL avoids by not attempting to
transfer from the different previously-learned Task A.

While having these transfer strengths, TERL also manages
to avoid catastrophic forgetting. Figure 4 shows the compar-
ison between (a) the performance of the three models in the
first task (in each of the three tests) right after such task has
been learned and (b) the performance right after the model has
learned the second task (with the learning rates set to zero, so
as to avoid re-learning). The comparison of the performance in
the first task, before and after learning the second task, allows
the evaluation of how the learning of the second task interferes
with the performance of the first one.

As expected, SIM suffers catastrophic forgetting both when
the second task is similar but not identical to the first one and
when the two tasks are very different. Again as expected, EXP
performs very well since it learns every task from scratch, and
previous acquired skills are not affected by the learning of the
new ones. What is most important is that, as expected TERL
does not suffer of the problem of catastrophic forgetting in
any of the three tests. The reason is that when a new task is
the same or similar to the previously learned task, TERL uses
a copy of the previously acquired skill to solve the new task
thus not damaging the capacity of the best expert trained to
solve the previous task. When the new task is different, TERL
does not transfer but rather uses a completely new expert, thus
avoiding interference.

To show the actual formation and use of background copies
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(a) Test one: same sensorimotor mapping.

(b) Test two: similar sensorimotor mapping.

(c) Test three: different sensorimotor mapping.

Fig. 3. Performance (reaching time) during learning in three ‘sequential tests’ in each of which the systems TERL, SIM, and EXP learn a first task for n trials
(200; 400, 700 in the three conditions; left panels) and then a second task for further n trials (right panels). Each curve represents the average and standard
deviation of ten repetitions of each experiment. (a) Test one: test with two tasks requiring the same sensorimotor mapping (Tasks A and Task B). (b) Test
two: test with two tasks requiring a similar sensorimotor mapping (Tasks C and Task D). (c) Test three: test with two tasks requiring a different sensorimotor
mapping (Task A and Task D). ‘Exp. time’ represents the ‘exploitation time’ of the noise generator (as explained in detail in Section II-B, this represents an
initial period of time at the beginning of each trial during which exploratory noise is kept at a minimum to foster exploitation).
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(a) Same sensorimotor mapping.
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(b) Similar sensorimotor mapping.
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(c) Different sensorimotor mapping.

Fig. 4. Test on catastrophic forgetting. Each graph shows the average and
standard deviation of reaching time in the first task before (bars on the left)
and after (bars on the right) learning the second task. (a) Same sensorimotor
mapping (Task A then Task B). (b) Similar sensorimotor mapping (Task C
then Task D). (c) Different sensorimotor mapping (Task A then Task D).

by TERL, Figure 5 shows the responsibilities that it assigns
to actor experts during learning in the three tests involving
same (a), similar (b) or different (c) sensorimotor mappings
(left panels show responsibilities of actor experts for the first
task of each test; right panels for the second one; data are
qualitatively similar for the responsibility signals of the critic
experts, data not shown). The graphs show that, when the
two tasks require the same sensorimotor mapping (Figure 5a),
TERL uses the same experts with the same responsibilities,
i.e. it re-uses the skill developed for Task A to solve Task
B. When the two tasks require similar sensorimotor mappings
(Figure 5b), TERL solves the second task, e.g. Task D, by
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(c) Different sensorimotor mapping.

Fig. 5. Use of the actor experts by TERL in three tests, each involving the
solution of two tasks in sequence, characterised by: (a) the same sensorimotor
mapping; (b) a similar sensorimotor mapping; (c) a different sensorimotor
mapping. Each of the three graphs shows the three highest prior responsibility
signals of the ten experts in one trial after learning the first task (left panels)
and in one trial after learning the second task (right panels). In each graph the
highest, second highest, and third highest priors are respectively marked with
a black, dark gray, and light gray strip, while all other priors are not marked
(white). The data refer to one specific system (seed 1): in other replications of
the experiment, or if the analysis is repeated for the critic experts, the results
are the same but of course involve different experts. Note that this type of
graphs give information on the selection of experts during the whole trial: here
the graphs simply show that TERL reliably selected specific experts during the
whole trial; in other conditions the graphs are very useful to analyse expert-
based models similar to TERL, especially at the beginning of the learning
process or when using gating networks having highly varying input.

re-using a copy expert developed in background while solving
the previous task, e.g. task C. Thus TERL is able to exploit
previously acquired knowledge to solve new tasks, and at the
same time to avoid catastrophic interference, by recruiting and
modifying expert copies developed for previously solved tasks.
Finally, when the two tasks require very different sensorimotor
mappings (Figure 5c), TERL uses different experts as it
realises that trying to transfer knowledge would be useless
or even detrimental.

C. Tests with the planar arm: scaling-up to several tasks and
experts

The experiments reported in this section test the capacity
of TERL to scale up to learn a larger number of tasks with
respect to the previous sections, and in particular show how the
mechanism of recruitment of already trained experts, or of still
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untrained experts to solve new tasks, continues to work with a
large number of available experts. The experiments also show
the capacity of TERL to recruit a restricted subset of experts
among the multiple available ones, for both functioning and
learning, based on the responsibility signals. For this purpose,
we trained the system in sequence with the six tasks shown in
Figure 6, each for 500 trials, using 30 experts for the critic and
30 for the actor (we set this large number to test the scaling
capabilities of the system; the number of experts of the critic
and actor do not need to be the same).

Fig. 6. Configuration of targets (tasks) used to test the scaling-up capacities
of TERL.

Before illustrating the results of these experiments, we also
indicate how they were also used to quantify the advantage of
TERL over other systems due to the possibility of differentially
initialising its experts. For this purpose, in these experiments
TERL was also tested in a version where the connection
weight of the bias of each actor expert network was randomly
generated in [-1,+1] with the effect that the initial actions
(here desired arm postures, or ‘equilibrium points – EPs’,
pursued by the robot PD or PID) of all actor experts were
more uniformly distributed in the work space (as usual, all
other connection weights were set to zero). In the graphs we
will refer to this condition with ‘TERLs’ (‘s’ refers to the ‘high
initial scattering’) to distinguish it from the condition with a
low initial scattering used so far where the bias connection
weight was drawn in [-0.1, +0.1] to have some differentiation.
Figure 7 shows the postures of the actor experts in the low
and high scattering condition in the initial phase of training.
Having initially scattered actor experts is advantageous as it
produces different initial postures/behaviours and this facili-
tates the selection of them by the information-accumulation
mechanism of the actor gating network. Although low, the
initial (small) scattering of the actor experts used in TERL
also explains the advantage it has with respect to SIM and
EXP in learning the fist task in the tests shown in Figure 3.
Notice that the possibility of exploiting the best skill from a
rich initial repertoire of skills is general as TERL samples in
parallel the goodness of all available experts for the current
task (since it compares the action of all experts with the action
actually performed) and so it rapidly focuses the selection
on the best available one. Without such a mechanism (e.g.,
as is in SIM and EXP) the initial repertoire of experts, and
in general any repertoire of experts available at a later time,

could not be probed to isolate the best expert usable to solve
the current task. Note that TERL rather than TERLs was used
throughout the paper to avoid that the additional advantage
given by scattering confounded the advantage of the system
based on the mechanisms identifying the best experts from
which to transfer knowledge (below we present some other
results on TERLs alongside TERL to show its advantages).

Figures 8 and 9 shows the results of the test on the six tasks
learned in sequence. TERL performs better than both the EXP
and the SIM architectures. This confirms the capacity of TERL
to scale up to a higher number of experts, 30 in this case, and
to exploit transfer opportunities when this is possible (e.g.,
when learning Tasks C and E after Task A, and Tasks D and
F after Task B). When the actor experts start with a higher
scattering of the initial EPs (TERLs), the system has an even
higher performance due to the advantages mentioned above.

A larger number of experts involves the following effects
on computational costs: (a) the functioning and learning re-
sponsibility signals of experts are computed in parallel on the
basis of the action/value errors of the experts: this implies
that the number of tests to do with a task in order to evaluate
the experts does not increase with the number of experts; (b)
the computation of the activation of experts increases linearly
with the number of experts (but notice that the activation of
different experts is independent, so it could be implemented
in parallel hardware); (c) the learning processes involve only
a given subset of experts for each step (here eight in total)
so it does not depend at all on the total number of experts
(recall that thanks to the functioning/learning decoupling, the
number of experts learning at each trial is fixed and depends
on how many background copy experts one wants to train, not
on the total number of available ex- perts). Importantly, this
also means that the computation time needed by the system
functioning and learning is fully independent of the experience
already acquired, contrary to most TRL systems that become
slower with the accumulation of experience (see Section IV).
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Fig. 9. Overall performance of SIM, EXP, TERL, and TERLs during learning
of six tasks in sequence: sums of the integrals, one for each model, of the
mean curves of the six graphs plotted in Figure 8.
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(a) (b)

Fig. 7. (a) Snapshot of the postures (actions) suggested by the actor experts in the low scattering condition (TERL). (b) Snapshot of the postures (actions)
suggested by the actor experts in the high scattering condition (TERLs). The thick stylized 2D arm indicates the current arm posture whereas the other thin
stylized 2D arms represent the arm postures suggested by the 30 actor experts (the number on each arm drawing indicates the expert). The thin arm marked
with ‘MIX’ represents the overall arm posture suggested by the mixture of experts; the thin arm marked with ‘GHOST’ indicates the arm posture suggested
by the exploration noise added to the mixture posture.

D. Tests with the planar arm: interleaved tasks
We also tested the capacity of TERL and TERLs to solve

multiple tasks when these are learned in an interleaved fashion
rather than in a sequence of blocks each focused on a task,
as done in the previous tests. For this purpose, the six tasks
considered in the previous subsection were learned during
1500 trials where at each trial the task to be learned was
randomly selected. As before, TERL and TERLs used 30
experts for both the actor and the critic.

Figure 10 shows the results of the test. The first interesting
point is the advantage of TERL on EXP, which learns from
scratch. Although not large, this advantage is important as it
shows that when TERL learns similar tasks at the same time
with interleaved trials the information gained is shared among
the experts. For example, when the system has to learn to reach
tasks A, C, E starting from EPs initially set at the centre of
the work space, the experts that it forms can initially be the
same, so that up to a certain point modifying them for solving
one task also improves them to accomplish similar tasks. A
second relevant point is the large advantage of TERLs versus
all other models, confirming that the initial differentiation of
the experts can significantly boost learning speed. Last, for all
conditions a higher performance also tends to produce a lower
statistical variation of the results of different repetitions of the
tests.

E. Test with a 3D redundant simulated 4-DOF arm (iCub)
This section illustrates a test to evaluate whether TERL was

capable of exploiting between-skill transfer while avoiding
catastrophic forgetting in more complex conditions. The test
required in particular to control the 3D 4DoF simulated robotic
dynamic arm of the humanoid robotic platform iCub, an
open-source robot built for studying cognitive development
in humans [61].

Figure 11 shows the simulated setup used in this test formed
by the iCub robot and a 3D environment containing 3 spherical

Fig. 10. Performance of the different systems during learning (trials) in the
interleaved test where six tasks changed at each trial and for several times.
The performance was measured as the time taken by the systems to reach and
touch the target during a trial. The six tasks are those of Figure 6. Curves are
averages of ten repetitions of the simulations.

target objects (in the simulator, these three objects can be
anchored to the world without an actual physical support).
Each arm of the iCub has 16 joints: 3 for the shoulder (J0−2),
1 for the elbow (J3), 3 for the wrist (J4−6) and 9 for the hand
(J7−15) 1. Here we used TERL to control the movements of
four joints of the right arm, in particular: J0, the ‘shoulder
pitch’, responsible for the front-back movement when the arm
is aligned with gravity; J1, the ‘shoulder roll’, affecting the
adduction-abduction movement of the arm; J2, the ‘shoulder
yaw’, affecting the yaw movement when the arm principal

1http : //wiki.icub.org/wiki/ICub joints



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, LATEX CLASS FILES, VOL. X, NO. X, PAG. XX–XX, DATE YEAR 16

Fig. 8. Reaching time of SIM, EXP, TERL, and TERLs during learning of six tasks in sequence. The test involved learning one after the other the targets A,
B, C, D, E, and F shown in Figure 6, each for 500 trials. Each curve and shadow represent the average and standard deviation computed over ten different
repetitions of the simulation.

axis is aligned with gravity; J3, the joint related to the elbow.
During the simulation J0 could assume values in the range
[-80◦;-15◦], J1 in the range [10◦;110◦], J2 in the range [-
10◦;75◦], and J3 in the range [20◦;85◦]. The positions of
the remaining joints were set at fixed values (J4 = −10◦;

J5 = −30◦; J9 = 80◦; J6−8 = J10−15 = 0◦). The torso joint
affecting the yaw with respect to the vertical axis was fixed
to −30◦. All trials started with the arm set at a fixed posture
so that the obstacle was in the way of the targets at each trial:
J0 = −90◦, J1 = 100◦, J2 = 90◦, J3 = 6◦.
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The three spherical objects in the environment had a diam-
eter of 3.5cm and were set in front of the robot (Figure 11).
The objects allowed the implementation of two reaching tasks,
each requiring that TERL learn how to control the right arm
of the iCub in order to reach either object B (‘Task B’) or
object C (‘Task C’) while avoiding hitting the ‘obstacle’ A.

Fig. 11. The iCub robot and the environment used to test TERL. The picture
refers to the beginning of a trial. Object A represents an obstacle, whereas
objects B and C represent the target objects that the robot has to reach.

The system had the same architecture and functioning of
the system of the previous sections, and was trained as in the
sequential test involving the 2D arm with a few differences.
First, all trials involving the solution of the tasks started with
the arm set at a fixed posture at the right of object A. This
made the task more difficult as object A was always an
obstacle for reaching the two targets B and C (Figure 11)
and so the robot had to perform curved trajectories around
the obstacle to reach the targets. Second, each trial ended
when the iCub hit any one of the three objects with the
hand, or after a timeout of 8 sec (in the 2D tests the time
out was 6 sec; as before, the integration time-step of the
model and robot equations was 0.01 sec). The longer trial
duration allowed a longer exploration necessary as the model
had to discover a more complex trajectory to reach the targets
while controlling a redundant arm (redundancy required the
algorithm to autonomously converge to one possible solution
among all those explored). Third, when the iCub hand hit
the obstacle the model got a negative reward signal set to
−0.5, whereas if it touched the target object received a reward
equal to 1. The reward was 0 otherwise. Fourth, TERL was
endowed with 10 experts for both the actor and the critic. Last,
the values of a few parameters of the model were changed
to take into account the different setup, in particular the
higher number of controlled degrees of freedom that required
a different number of output units, and thus a different number
of Gaussian functions used by the algorithm as features (see
Table II in Appendix).

In the test, the system first learned Task B and then Task C,
each for 5000 trials. As the tasks require a similar sensorimotor

mapping, they allowed us to evaluate whether TERL was
capable of re-using the experts employed to solve Task B when
learning to solve Task C. To show the capacity of TERL to
exploit transfer we also tested EXP in the same experiment
involving first learning of Task B and then of Task C.

Figure 12a shows that TERL learns the second task (Task
C) much faster then the first task (Task B) as it can partially
transfer the ability acquired for the first task to the second
one. The fact that the advantage in task C is actually due to
TERL’s transfer capacity rather than a different difficulty of
the Task C with respect to Task B is demonstrated by the
fact that TERL is much faster in learning Task C than EXP
(Figure 12b). The same result is shown by the reaching time
instead of the reward (Figure 13).

The curve trajectories performed by TERL to solve the
obstacle avoidance Task B and Task C are shown in Figure 14.
These curves show how the sensorimotor mappings needed
to solve the two tasks are similar which explains the higher
performance of TERL capable of taking advantage of this.
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Fig. 14. Trajectories of the iCub hand produced by TERL after learning two
3D tasks requiring a similar sensorimotor mapping (Tasks B and Task C while
avoiding A, see Figure 11). The trajectories refer to one run of the simulation
but other runs produced qualitatively similar results.

IV. DISCUSSION: TERL COMPARISON WITH OTHER
MODELS

This section compares TERL with other models illustrating
its similarities and novelties with respect to them and the
different sub-problems of transfer reinforcement learning they
face.

a) The option framework and off-policy learning: Sev-
eral systems from the RL literature perform transfer of knowl-
edge between tasks by relying on the option framework ([62]
for a review). An option is a data structure that encapsulates
a policy (a skill), an initiation set (states where the option
can be se- lected), and termination condition (establishing
when the option execution terminates, e.g. when some sub-
goal states are achieved). Options can be used as building
blocks to solve different complex tasks through their suitable
combination [63]. Option-based systems have been mainly
used to face compositionality problems rather than skill-to-
skill knowledge-transfer problems as here. These are two very
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Fig. 12. Performance of TERL and EXP where the systems are first trained on Task B for 5000 trials and then on Task C for another 5000 trials. (a) Reward
acquired by TERL during the sequential learning of the two 3D tasks requiring a similar sensorimotor mapping (Tasks B and C): although Task B and Task C
are learned sequentially, the learning curves are represented in the same graph to ease comparison. (b) Reward acquired by TERL and EXP during learning of
Task C and showing the advantage of TERL over EXP due to its capacity for transfer. Each curve represents an average over ten repetitions of the experiment,
and data are smoothed over 100 trials. Notice that TERL solving task B (graph (a)) and EXP solving task C (graph (b)) have an initial negative reward
indicating that they often hit the obstacle.
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Fig. 13. (a) Reaching time of TERL during the sequential learning of the two 3D tasks requiring a similar sensorimotor mapping (Tasks B and C). TERL
first learns Task B for 5000 trials and then learns the second Task C for other 5000 trials. (b) Reaching time of TERL and EXP during learning of Task C.
Each curve represents an average over ten repetitions of the experiment, and data are smoothed over 100 trials with a moving average.

different problems. Compositionality problems concern how
assemble multiple skills to solve complex tasks that require
more than one options (skills) to be solved. For example,
the option framework allows the formation of policies that
select multiple options in sequence, together with primitive
actions, to accomplish complex goals. Compositionality trans-
fers knowledge from a (complex) task to a (complex) task
by re-using whole skills (or part of them), rather than from
acquired skills to a newly learned skill as required in skill-
to-skill transfer problems. For example, the complex skill of
‘pressing a button and the complex skill of ‘scratching with the
finger’ might share a very similar component-skill of ‘reaching
with the finger’ performed before performing respectively the
component-skills ‘pushing with the finger’ and ‘scratching’. A
precursor of these systems is Compositional Q-learning model
(CQ-learning) [17], relevant here also because it proposed
the idea of adapting some principles of the mixture-of-experts
model to a RL context. As another example, recently it has
been shown [64] that the transfer of whole options between

different grid-world environments can be facilitated when
options are based on the agent’s sensations (e.g., egocentric
position of objects) rather than on information related to
the specific problem (e.g., absolute spatial relations between
objects).

A key idea that can be exploited within the option frame-
work [62], and more generally in systems formed by multiple
RL experts, is ‘off-policy learning’ [63]. Off-policy learning is
employed by several TRL systems reviewed below and allows
RL algorithms, for example Q-learning [65], [24], to train a
‘target policy’ (and/or a value function) on the basis of actions
selected by another ‘behaviour policy’. Off-policy learning has
been used for ‘intra- option learning’ to let options learn from
their partial execution or from the execution of actions by
other components of the system [62]. A system that makes
massive use of off-policy learning is the Horde architecture
[66]. This architecture is also related to TERL as it is formed
by multiple individually simple experts (‘demons’) that can be
used for prediction or control purposes. Each demon learns an



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, LATEX CLASS FILES, VOL. X, NO. X, PAG. XX–XX, DATE YEAR 19

approximation (e.g., based on features and linear functions) of
a generalised value function (GVF). A GVF stores knowledge
and learns through mechanisms analogous to those used to
estimate RL conventional value functions, but it can refer
to elements different from rewards such as the activation
of a robot sensor. A demon is based on a reward function,
a termination function, a terminal-reward function, a policy
(which is given in the case of prediction) and learns the
related GVF. Such functions can be structured so that, for
example, a demon can be used to learn to predict the time
when a particular sensor will be activated, or to learn a policy
to accomplish a certain activation of a sensor through an
off-policy RL algorithm. TERL shares with Horde the idea
of behaviour or value prediction based on multiple experts
and their parallel learning, and the background objective of
life-long learning, but differs from it in many respects, in
particular it pivots on transfer learning to improve learning
speed whereas Horde relies on off-policy learning.

b) Models from the literature on transfer reinforcement
learning: Among the several systems proposed within the lit-
erature on transfer RL (TRL), we focus here on those closer to
TERL, i.e. those that address the source-task selection problem
by explicitly reasoning about ‘libraries’ of already solved tasks
to decide from which of them to transfer knowledge to the
new task [6]. One of these systems, called Policy Reuse Q-
learning – PRQ-learning [67], uses off-policy learning, based
on Q-learning [65] to transfer knowledge. In particular, it
uses ‘source policies’ (i.e., previously learned policies form
which to possibly transfer knowledge) to train (off-line) a new
optimal policy for each new task: the source policy to use for
transfer is selected at each trial on the basis of a soft-max
function applied to the ‘reuse gains’ of all source policies (the
reuse gain of a policy is equal to the average reward obtained
in the the new task). The newly learned policy is added to
the policy library if its reuse gain is larger than a certain
threshold with respect those of existing policies. With respect
to TERL, PRQ-learning has the advantage of computing an
explicit metric of the similarity between tasks and the capacity
to identify a core set of policies for a domain. However,
at each trial it requires the selection of only one policy to
use (the system is tested in a grid world) and evaluates the
reuse gain of only that policy: this implies the need for an
increasing number of trials to evaluate the source policies as
their number increases. Instead, TERL evaluates the ability of
experts to solve/evaluate the new task in parallel at each step.
In addition, regarding brain modelling, PRQ-learning solves
the interference problem by building a new data structure for
each new task and so it could not be usable to model how the
brain faces such problem.

Another class of TRL systems transfers knowledge encoded
as ‘experience samples’, in particular tuples < s, a, s′, r >
(i.e., the state and action at a certain time step and the state and
reward at the following time step), rather than ‘compiling’ it
into function approximators. For example, the system proposed
in [68] stores the experience samples during a ‘sampling
phase’ and then, during an off-line learning phase, computes
the approximation of the action-value function on the basis
of the stored samples. The key idea of the system is to

implement knowledge transfer by using samples from source
tasks that are similar to the target task. The selection of the
source tasks and of their tuples is done on the basis of the
‘compliance’ (similarity) of such tuples with those experienced
in the target task. The system has the advantages of basing
transfer on the similarity between the dynamics and reward
functions of different tasks and to be applicable to problems
where both reward and transition functions change. However,
its batch nature and the computation of compliance requires
it to explicitly record experienced tuples, which is memory
intensive, and to directly compare tuples, which implies a com-
putational cost that increases with the number of experienced
tuples. Moreover, as these mechanisms directly store tuples of
experience they could not be used for modelling ‘compiled’,
semantic knowledge as done in biological neural networks.
TERL, instead, tests the experts for selection in parallel and
‘compiles’ the acquired information into the parameters of the
experts (function approximators), so it requires computation
time and memory resources that do not increase with the length
of past experience.

c) The MOSAIC models: The systems most similar to
TERL are those related to the MOSAIC model [69], so these
are considered more in depth. TERL and some MOSAIC mod-
els have important similarities but also differences that make
them suitable to face different problems. A first MOSAIC
model similar to TERL is the Multiple Model-based RL model
(MMRL) [70]. MMRL is composed of modules formed by a
predictor of the world dynamics (taking as input the current
state and planned action, and returning as output the next
state) and a RL controller. During each trial, the errors of the
predictors determine the responsibility signals of the modules:
for this purpose, each module predictor error is passed through
a Gaussian function (measuring its ‘correctness’) and then
all the Gaussian activations are passed through a soft-max
function. The responsibility signals are used to both weight-
average the contribution of the RL controllers to act, and to
regulate the learning rate of both the predictors and the related
RL controllers. In this way, different modules specialise in
predicting and acting in sub-portions of the whole problem
space based on the correctness of the predictors.

These ideas are further developed in the MOSAIC-RL
model [71], the MOSAIC-family model most similar to TERL.
MOSAIC-RL is formed by three sets of ‘modules’: ‘forward
modules’, predicting the environment dynamics (i.e., models
of the state transition function), ‘reward modules’, predicting
the 1-step reward (i.e., models of the reward function), and
RL controllers (each based on a value-function approximator
and a policy directly generated from the value approximator
through control theory methods). With respect to previous
MOSAIC models, in MOSAIC-RL the three types of modules
are decoupled, so they segment the problem space differently
on the basis of their respective errors: the world-dynamics
prediction errors, the 1-step reward prediction errors, and the
TD-errors. As in MMRL, these errors are used to compute the
responsibility signals of the related type of modules on the
basis of Guassian and soft-max functions. However, now the
three types of modules have distinct responsibility signals, so
the RL controllers deciding the action are selected on the basis
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of their TD error, not on the basis of the world dynamics as
in MMRL. This allows the model to face not only problems
with non-stationary (i.e., hidden) dynamics, as MMRL, but
also problems involving ‘a non-stationary reward function’,
i.e. multiple reward functions (multiple tasks).

Given the similarities between TERL and MOSAIC-RL, in
terms of the responsibility signals computed in parallel on the
basis of a softmax of Gaussians of errors, and the segmentation
of the whole problem into sub-problems (‘tasks’), it is impor-
tant to see how they can be used to face different problems.
The key difference between the two systems is that TERL uses
the softmax of Gaussians to train the gating networks, not only
to select the experts to act: the knowledge acquired with this
learning process during the first trials in which a new task
is faced (when TERL selects multiple experts for action as it
still does not know which one is the best) is compiled into the
parameters of the gating networks. Thus once acquired it can
be used to immediately select the best expert to use, based on
the information regarding the identity of the task to solve, since
the very first step of the trial. Instead, MOSAIC-RL uses the
softmax of Gaussians to dynamically accumulate evidence on
the experts to select step-by-step during the trial, or during
multiple trials, when these address the same task multiple
times in sequence, even after the system has learned to solve
the task. This implies an important feature of the problems that
MOSAIC-RL can solve. In trial-based RL problems, relevant
for transfer RL, reward is often zero during the trial and high
at the end of the trial when the task ‘goal’ is accomplished,
so the TD-error can be high only at the end of the trial. In
these cases, the responsibility signals of controllers computed
by MOSAIC-RL on the basis of their TD-errors are similar
during the first part of the trial and differentiate only at the
end of it, so they can start to have an effect on the selection
of controllers only from the second trial onward, and only
when the same task is experienced for more than one trial in
sequence. In this respect, in commenting on the performance
of MOSAIC-RL [71], it was reported that ‘after learning, the
RL modules also successfully switched within a few (one or
two) trials when the subenvironment changed’ (note that the
training and test of MOSAIC-RL was done in blocks each
formed by 100 trials involving the same ‘subenvironment’,
i.e. task).

This difference implies that MOSAIC-RL is not suitable
to face problems as those used here to test TERL where
the task is switched at each trial and its identity is known
(interleaved condition tests, see Figure 10). This situation is
for example common in animals where motivation changes
continuously after being ‘satisfied in one trial’ and is known
to the animal. After learning, for example, when an animal
is hungry (hunger signals a first task identity) it is able to
directly move to a food dispenser, and when it is thirsty (thirst
signals a second task identity) it is able to directly move to a
water dispenser: this without the need to sample each time
the reward given by food or water. The same holds when
animals pursue a goal: also in this case the task identity is
known and so the animal can immediately recall the behaviour
to accomplish it (after this behaviour has been acquired and
associated to the goal). Note that this behaviour of MOSAIC-

RL is expected and is not a drawback of the system. Indeed,
MOSAIC-RL has been designed to solve problems where
the task identity is hidden and so has to be identified by
repeated sampling: the mechanisms of the system are thus
very good for facing these problems. Instead, for the TRL
problems considered here, for which TERL has been designed,
the information about the identity of the task to solve is clear
and available before each trial. Since it addresses a different
problem with respect to TERL, MOSAIC-RL does not use
different responsibility signals for the evaluation function and
the policy ‘experts’, nor does it use different responsibility
signals for functioning and for learning as done by TERL.
These features are very important, as shown here, when the
system is used to address the skill-to-skill knowledge-transfer
problem and the catastrophic-interference problem.

Overall, it can be said that MOSAIC models and TERL
are best suited to solve different complementary problems:
MOSAIC models are best suited to face the problem of seg-
mentation of whole MDP problems into sub-tasks on the basis
of the progressive on-line accumulation of evidence on the
hidden (non-observable) world features based on the errors of
predictors of the world dynamics or the world reward. Instead,
TERL can be used to solve the skill-to-skill transfer problem
without incurring catastrophic interference on the basis of
gating networks learning to map goals to responsibilities of
experts. For these reasons, the two systems might be suitably
integrated in the future.

d) Other algorithms, evolutionary duplication, and task-
policy mapping: The generation of multiple neural copies by
TERL links it to another class of models that implement neural
duplication to solve different tasks or sub-parts of the same
task. One of these models [42] is based on RL experts called
‘mots’ that self-organise in a 2D spatial grid in a way that
is reminiscent of self-organising neural networks. Mots are
selected for action and for learning based on a previously
proposed model called SERL – Selected Expert Reinforcement
Learner [72]. In particular, each mot implements a RL policy
– e.g., in the form of Q-learning – and at the same time
learns to estimate the inaccuracy of that policy – e.g., in the
form of error of the Q-learning values. At each time step,
a ‘winning mot’ is selected for action and for learning if it
has the highest Q-value reduced by the Q-value estimated
error. The mots close to the winning mot also learn and
this leads to the emergence of spatially organised mots that
tend to specialise on the same parts of the problem space,
and thus to form ‘copies’ of the same portion of behaviour
similar to TERL. Later [43], mots maps have also been
develop to capture in space the temporal relations (sequential
activation) of mots by training not only the winning mot
and its neighbours but also the previous and/or following
winner(s) and neighbours. Future work might aim to obtain
a spatial organisation of TERL experts by employing similar
mechanisms as those used by mots, thus benefiting from the
advantages that this carries in terms of smoothness, robustness,
hierarchy by region, dimensionality reduction, and reuse (see
[43]).

Another relevant class of models that implement neural
duplication has been proposed in [44], [73]. These models are
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developed within an evolutionary framework, so they can be
used to model neural duplication based on genetic processes
[73] whereas their use to model learning processes related
to the single individuals, as in TERL, has been proposed
only recently [74], [75]. In this respect, TERL represents a
relevant hypothesis as to how neural duplication might take
place within the single animal behaviour and brain when trial-
and-error learning mechanisms are involved [21], [22].

Another class of systems learns to map tasks to solutions,
in particular it uses the information regarding features of the
goals, or reward functions, to best initialise the value functions
or policies to solve new tasks [76], [77]. As in TERL, in
these models the transition function is assumed to be constant.
While solving different tasks, these systems learn a mapping
between the goal features and the parameters of the value
function or policy approximators. This mapping allows the
systems to generate the initial policies and value functions to
solve new tasks: later these policies and value functions can be
refined with further training experience. These systems face a
TRL problem that is different, in particular complementary,
with respect to the one faced by TERL. Indeed, they can
exploit information (features) on the goals of the new tasks
before solving them, but then when they further refine the
initial solutions they cannot further transfer knowledge from
previously solved tasks. On the contrary, TERL cannot benefit
from information (features) on the new tasks before starting to
solve them, but on the other hand it can transfer information
from previously solved tasks after it starts to solve the new
tasks based on the effectiveness of existing experts in solving
them (rather than based on similarities between goals). To
further clarify this difference, consider these examples. When
the system faces a new task where the goal is very similar to
the goal of a previously solved task, and indeed the two tasks
require a very similar sensorimotor mapping to be solved, then
the systems under discussion can formulate a good first guess
on the solution to use. If instead the new task requires a very
different sensorimotor mapping, and such sensorimotor map-
ping (or a similar one) was previously learned to accomplish
a different goal, then the mechanisms of TERL would rapidly
identify the expert encoding the latter mapping and use it to
solve the new task. Similarly, the mechanisms of TERL would
be useful when solving a new task where the goal does not
give any useful information about the type of sensorimotor
mapping to use. For these reasons, the mechanisms proposed
by the systems discussed here and TERL might be integrated
in future work (Section V sketches how TERL might do this).

V. CONCLUSIONS AND FUTURE WORK

A. Main achievements

This paper has described and tested a reinforcement learn-
ing architecture (‘TERL – Transfer Expert Reinforcement
Learning architecture’) to learn multiple skills solving dif-
ferent related tasks. The architecture offers a solution to
the reinforcement-learning source-task selection problem [6]
requiring the identification of the skills acquired to solve
previous tasks from which to transfer knowledge to best solve
new tasks.

We sought a solution to this problem under two stringent
conditions. First, TERL was not given any information re-
garding the similarity between the solved tasks and the new
tasks and so it had to sample the actual performance of the
possessed skills in the new task to infer their relevance for it.
This condition was introduced to ensure the development of al-
gorithms that are able to exploit the knowledge acquired while
solving the new task without having any prior information on
the similarity between the solved tasks and the new task. The
solution proposed here is important because such knowledge
on the effectiveness of previous solutions to solve the new task
is always available in source-task selection problems. Once we
have developed efficient algorithms capable of fully exploiting
such knowledge, we can develop and add to them other
mechanisms able to use additional information, for example
related to the similarity between tasks (see below). The second
stringent condition was that the computational resources used
by the system (here the experts) were constant. The use
of the same resources to solve multiple tasks can support
generalisation and knowledge transfer but also introduces the
well-known problem of catastrophic interference. The use of
the same resources was dictated by our objective of building
solutions that have biological plausibility.

Seeking the solution to the skill-to-skill transfer problem
under the two conditions just described led to the develop-
ment of two core mechanisms incorporated in TERL. The
first mechanism accumulates evidence on the goodness of
the skills, measured in terms of collected reward, during
the solution of the new task. This mechanism accumulates
such evidence in parallel for all the experts, so continues
to work well when the number of experts increases (it does
not require the test of single experts separately one after
the other). The second mechanism involves the decoupling
of the responsibility signals used for the functioning and for
the learning processes of the experts. This decoupling allows
TERL to overcome the catastrophic interference problem.

The tests of TERL with a 2D robotic dynamic arm showed
that the system works both in conditions where tasks have
to be learned and performed in sequence (i.e., with several
blocks of trials for each task: this challenges the robustness
of the system to catastrophic forgetting) or in random order
(i.e., with one different task per each trial: this challenges the
capacity of the system to rapidly decide which experts to use).
Other tests showed how TERL scales up to larger numbers of
experts and tasks with little additional computational costs.
Also, in contrast to several transfer reinforcement learning
systems that explicitly store experience in the form of state-
action-state-reward tuples, the speed of functioning of TERL
mechanisms is fully independent of the amount of knowledge
already acquired. Preliminary experiments also showed that
TERL can scale up to control a 3D redundant dynamic robotic
arm.

B. Future work

The architecture of TERL could be further tested and
improved in different ways in future work. In the current
work, the experts were given only information about the task
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identity, but not on task features or task goals, to facilitate
the development and study of the transfer algorithms tested
here. For the same reasons, the gating network was informed
only as to the task identity (with this the system only knows
if two tasks are the same or different), and in particular it
was not given a richer description of the task, or task goal, in
terms of features (which might hint to the possible similarities
between two tasks). In future work, it will be interesting (a)
to give the experts further information regarding the task to
solve, and (b) to give both the experts and the gating networks
a rich description of the task/goal (e.g., as in the system
proposed in [77] and [78], where a robot is informed on the
position in space of a target to be hit with a dart or a ball).
We speculate that this would have important consequences.
Giving information about tasks to the experts might allow the
system to encode knowledge of more than one task in the
same expert, now not possible. In turn, this might allow the
study of how the system encodes similar tasks in the same
expert, and also allow the system to learn a number of tasks
greater than the number of available experts. Giving the system
a rich description of the task/goal might allow the gating
networks to use such information to create useful predictions
about the responsibility to assign to experts for each new task
before experiencing it (here such prior signals were necessarily
equal between them as the system knew only the identity
of tasks and has no information about their similarity). The
mechanisms described here could then be used to accumulate
evidence about the actual capacity of experts to solve the new
task based on their test in the new task, so as to strengthen
or weaken the responsibility signals predicted initially. The
output of the gating networks before and after this learning
and accumulation of evidence could thus be interpreted as
prior and posterior probability estimates of which experts are
best to solve the new task similar to Bayesian approaches [79].

Future work might also further improve the mechanism that
accumulates evidence on the goodness of experts for new
tasks. In particular, here the mechanism searches only the
average parameters of the Gaussian functions used to update
the responsibility signals of experts, while its size (σ2

A and
σ2
C) is fixed. It might instead be possible to find a way to

also estimate such parameters, similar to what is done in the
mixture of Gaussian models [80], but taking into account the
RL context considered here.

Future work should also further study and improve the
mechanism used here to preserve the best experts against
interference when facing some challenging conditions (e.g.,
when tasks are learned in sequence). Indeed, here we used a
heuristic mechanism that lowers the learning rates of experts
that achieve a high functioning responsibility in given tasks
as this indicate that they can be reliably considered the best
experts in those tasks. More principled mechanisms should
hence be developed for this purpose.

Another aspect of the architecture to improve involves the
treatment of noise. Here we adopted a simple solution as
this was not the focus of this work. Noise was kept low at
the beginning of each trial during a fixed time interval that
was sufficient to solve the task if the system had already
learned it, and then noise was increased to let the system

explore new solutions in case of failure to solve the task during
such interval. Future work should find new solutions to this
problem, in particular to regulate the level of noise depending
on the system’s performance suitably estimated on the basis
of a meta-learning process (e.g., see [81]).

Another aspect of TERL that might be developed in future
work is that it currently assumes the existence of tasks to
be solved, and that it receives information about the identity
of the task to solve within each trial. These assumptions
have important consequences on the system functioning, for
example they gives an episodic nature to the reinforcement
learning algorithms used by the system and this affects the
algorithms to compute the global and local TD-errors, the
exploration-exploitation noise, and the reset of some variables.
Future work could make the system fully autonomous by
endowing it with a component that is able to self-generate
goals, tasks, and learning trials. For example, a recent work
[82] has proposed a system that self-generates goals when
the exploratory action of the simulated robot controlled by
the model causes important effects in the environment, for
example it turns on a spherical light by touching it. This
system also self-generates ‘trial-terminations’ either when it
successfully accomplishes the currently pursued goal or when
a time out elapses. TERL might be suitably integrated with
similar mechanisms for goal (task) and trial self-generation.

Given the bio-inspired nature of the ingredients used to
build it, TERL might also be used for investigating important
behavioural and brain phenomena. One possible application is
the study of the psychological processes of assimilation and
accommodation postulated by Piaget [1], as started to do by
[21] and [22]. Along this line, the system might also be used to
investigate the open-learning processes characterising children
[83] and leading them to progressively acquire a repertoire of
increasingly sophisticated skills (as mentioned in Section I,
this was one main motivation for designing TERL). In this
respect, it would be interesting to endow the system with the
autonomous capacities of self-generating goals and tasks, as
mentioned above, and focusing on those that are learned with
the highest learning rate [84], [85], [86], [87], [82].

TERL can also be used to study psychophysical issues
related to human motor learning, in particular problems related
to how the motor system transfers knowledge between similar
motor tasks. For example, the seminal work of [88] showed
that learning and transfer of reaching movements are strongly
facilitated when different tasks are learned in interleaved ran-
dom trials rather than in sequential whole blocks of trials each
focused on different tasks. Other studies have investigated how
humans generalise a newly learned reaching skill, acquired to
reach a given target point while compensating a disturbing
force field, to other target points laying on a circumference
centred on the (fixed) starting point [89], [90], [91]. These
studies show how transfer and generalisation benefits only
tasks involving target points that are very close in space. The
architecture and transfer capabilities of TERL seem ideally
suited to investigate these phenomena because they support
transfer learning between similar tasks, and these transfer
processes are parameterised under many respect, and because
they can be linked to the architecture and functioning of the
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brain (see below; see also [92], for a review on experiments,
models, and possible approaches to investigate these issues).

Some aspects of the architecture and functioning of TERL
have been inspired by the brain organisation and so they might
be leveraged to model and investigate some open issues in
neuroscience. In general, reinforcement learning algorithms
are suitable to study the organisation and learning mecha-
nisms of hierarchical architecture [93]. Within a biological
perspective, TERL architecture might be used to model basal
ganglia-cortical loops [94], [95], a brain hierarchical system
playing a key role in trial-and-error learning in organisms
[96], [48], [97], [98]. For example, following previous works
[18], [99], the capacity of TERL gating networks to assign
different tasks/goals to different experts might be used to
model and study he mechanisms with which basal ganglia and
cortex form separated loops and channels dedicated to different
sensory inputs, actuator outputs, and input-output mappings
[96], [100].

The capacity of TERL to form copies of experts on the basis
of reinforcement learning processes could be used to model the
duplication of neural modules in the brain [41], a process that
has been obtained through evolutionary algorithms mimicking
DNA-based neural duplication [73], [44] and has also been
previously observed in other systems [70], [72], [42]. In this
respects, we are not aware of previous systems regulating the
duplication process during learning on the basis of dedicated
mechanisms such as the ranking and learning-responsibility
mechanisms described here.

APPENDIX

Parameters setting: The parameters of the model were set
as indicated in Table II.

TABLE II
PARAMETERS OF THE MODEL USED TO CONTROL THE 2D AND THE 3D

ROBOTIC ARM. THE TABLE REPORTS IN PARENTHESES THE PARAMETERS
USED WITH THE 3D ARM THAT DIFFER FROM THOSE USED WITH THE 2D

ARM.

Parameter Value
State features
D 212 (84)
σ2
f 1

Responsibility accumulation process
κ 0.01
σ2
AG 0.5 (0.3)
σ2
CG 0.5 (0.3)

Discount factor
γ 0.99
Learning rates
ηAG 3.0
ηCG 1.0
ηA 1.2 (2.0)
ηC 0.012 (0.2)
Noise generation
ε 20
τ 0.01
M 100
T ′ 600 (800)
υ 0.95
β 0.03
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